
Binary Search Trees
Dr. Baldassano

chrisb@princeton.edu

Yu’s Elite Education

Last week recap

 Associative arrays and sets

 Hash functions

 Minimize collisions, spread items evenly

 Dealing with collisions

 Open addressing vs chaining

 Cryptographic hashes (e.g. passwords)

 Locality-sensitive hashing for nearest neighbors

Last week’s assignment:

Anagrams

 Given a dictionary

http://www.codeabbey.com/data/words.txt

divide it into groups of anagrams

 Example: tea, asleep, plus, ate, please

 [tea, ate], [asleep,please], [plus]

http://www.codeabbey.com/data/words.txt

Maintaining a sorted list

 Sorted lists make many things easier

 What if we want to add/remove items from a sorted

list?

 Option 1: Resort list each time

 Expensive, O(N log N) each time

 Option 2: Insert into array

 Easy to find insertion point O(log N), hard to insert O(N)

 Option 3: Insert into linked list

 Hard to find insertion point O(N), easy to insert O(1)

Binary search tree

 Solve both problems with new kind of linked

data structure: binary search tree

 BST property: every node is greater than its

left child, less than its right child

Finding element in BST

 Start at root (top)

 If root too big, go left, else go right

 Iterate until finding element or end of tree

 Big O?

Inserting element in BST

 Exactly the same as finding, except once we

get to end of tree we add the new node

 https://www.cs.usfca.edu/~galles/visualizati

on/BST.html

 Big O?

https://www.cs.usfca.edu/~galles/visualization/BST.html

Log(N) operations in BST

 Find and insert

 Minimum element

 How to find?

 Maximum element

 How to find?

 Remove (we’ll come back to this)

 So this is like a sorted list or array, but

without any O(N) operations

Traversals of BST

 How to print every node of a BST?

 Recursive solution:

Visit(Node):

print(Node)

Visit(Left child)

Visit(Right child)

Types of Traversals

Visit(Node):

Pre-order: print(Node)

Visit(Left child)

In-order: print(Node)

Visit(Right child)

Post-order: print(Node)

Breadth-first traversal

 Pre/In/Post order all depth-first –

immediately go down to deepest nodes

 Breadth-first: rather than using a recursion

stack, use a queue

Python Example: Insert and

In-order traversal

Removing element in BST

 Trickiest operation – need to make sure that

BST property still holds

 If node has no children, just delete it!

 If node has only one child, connect node’s

parent to child

Removing with two children

 Idea: swap node with next-highest node

 Next-highest node is minimum of right subtree

Removing with two children

 Practice

 http://visualgo.net/bst.html

http://visualgo.net/bst.html

Problem: Check BST

 Given a binary tree, check to see if it is a BST

Problem: sorted array to BST

 Given a sorted array, can we build a balanced

BST?

Problem: sorted LL to BST

 Given a sorted linked list, can we build a BST

by just changing links?

Problem: Lowest Common

Ancestor

 Given two nodes, find their first ancestor

Homework: Maximum depth

of BST

 Calculate the maximum depth of a BST - the

longest path from the root to a leaf

 For example, max depth = 3

 This is often an important thing to keep track

of – if max depth is too high, BST is turning

into a list

