
Binary Search Trees
Dr. Baldassano

chrisb@princeton.edu

Yu’s Elite Education

Last week recap

 Associative arrays and sets

 Hash functions

 Minimize collisions, spread items evenly

 Dealing with collisions

 Open addressing vs chaining

 Cryptographic hashes (e.g. passwords)

 Locality-sensitive hashing for nearest neighbors

Last week’s assignment:

Anagrams

 Given a dictionary

http://www.codeabbey.com/data/words.txt

divide it into groups of anagrams

 Example: tea, asleep, plus, ate, please

 [tea, ate], [asleep,please], [plus]

http://www.codeabbey.com/data/words.txt

Maintaining a sorted list

 Sorted lists make many things easier

 What if we want to add/remove items from a sorted

list?

 Option 1: Resort list each time

 Expensive, O(N log N) each time

 Option 2: Insert into array

 Easy to find insertion point O(log N), hard to insert O(N)

 Option 3: Insert into linked list

 Hard to find insertion point O(N), easy to insert O(1)

Binary search tree

 Solve both problems with new kind of linked

data structure: binary search tree

 BST property: every node is greater than its

left child, less than its right child

Finding element in BST

 Start at root (top)

 If root too big, go left, else go right

 Iterate until finding element or end of tree

 Big O?

Inserting element in BST

 Exactly the same as finding, except once we

get to end of tree we add the new node

 https://www.cs.usfca.edu/~galles/visualizati

on/BST.html

 Big O?

https://www.cs.usfca.edu/~galles/visualization/BST.html

Log(N) operations in BST

 Find and insert

 Minimum element

 How to find?

 Maximum element

 How to find?

 Remove (we’ll come back to this)

 So this is like a sorted list or array, but

without any O(N) operations

Traversals of BST

 How to print every node of a BST?

 Recursive solution:

Visit(Node):

print(Node)

Visit(Left child)

Visit(Right child)

Types of Traversals

Visit(Node):

Pre-order: print(Node)

Visit(Left child)

In-order: print(Node)

Visit(Right child)

Post-order: print(Node)

Breadth-first traversal

 Pre/In/Post order all depth-first –

immediately go down to deepest nodes

 Breadth-first: rather than using a recursion

stack, use a queue

Python Example: Insert and

In-order traversal

Removing element in BST

 Trickiest operation – need to make sure that

BST property still holds

 If node has no children, just delete it!

 If node has only one child, connect node’s

parent to child

Removing with two children

 Idea: swap node with next-highest node

 Next-highest node is minimum of right subtree

Removing with two children

 Practice

 http://visualgo.net/bst.html

http://visualgo.net/bst.html

Problem: Check BST

 Given a binary tree, check to see if it is a BST

Problem: sorted array to BST

 Given a sorted array, can we build a balanced

BST?

Problem: sorted LL to BST

 Given a sorted linked list, can we build a BST

by just changing links?

Problem: Lowest Common

Ancestor

 Given two nodes, find their first ancestor

Homework: Maximum depth

of BST

 Calculate the maximum depth of a BST - the

longest path from the root to a leaf

 For example, max depth = 3

 This is often an important thing to keep track

of – if max depth is too high, BST is turning

into a list

