
Game Playing AI
Dr. Baldassano

chrisb@princeton.edu

Yu’s Elite Education

Last 2 weeks recap: Graphs

 Graphs represent pairwise relationships

 Directed/undirected, weighted/unweights

 Common algorithms:

 Shortest path

 Importance/centrality (pagerank)

 Strongly connected components

 Spanning tree

Homework: Superbull

 http://usaco.org/index.php?page=viewproblem2&cpid=531

http://usaco.org/index.php?page=viewproblem2&cpid=531

Planning with an adversary

 We’ve talked about using graphs for planning

 Find best plan to goal state using shortest path

 But often we aren’t the only ones trying to

accomplish a goal!

 Playing games

 Sharing resources, e.g. internet congestion

 Game playing is a type of adversarial search

A simple game

 Player 1 picks the color

 Player 2 picks the shape

P1 wins

$20

P1 wins

$10

P1 loses

$20

P1 wins

$5

Adversarial search

 We might not be able to get to the best

outcome anymore

 Assume that other player will act optimally,

and make the more that will allow them to

cause the least damage to us

Our game as a tree

P1 wins

$20

P1 wins

$10

P1 loses

$20

P1 wins

$5

P2 P2

P1

Our game as a tree

20 10-20 5

P2 P2

P1

Our game as a tree

20 10-20 5

P2:-20 P2:5

P1:5

Our game as a tree

Min Min

Max

Minimax

 https://www.youtube.com/watch?v=zDskcx8FStA

https://www.youtube.com/watch?v=zDskcx8FStA

Minimax search

NodeValue(node, depth)

if node is a leaf

return node.value

if depth % 2 == 0

return max(NodeValue(child1),NodeValue(child2))

else

return min(NodeValue(child1),NodeValue(child2))

Minimax for Tic-Tac-Toe

Problems with pure minimax

 Minimax guarantees that we’ll choose the

best move

 Assuming other player acts optimally, we

can’t lose any (fair) game!

 BUT number of possible states may explode

 Chess has ~35 moves, ~40 move game –

1062 states

 How to cut down on the number of states we

need to explore?

Pruning

Alpha-beta pruning

 Can keep track at each node of a lower

(alpha) and upper (beta) limit on when this

node will be useful

 If beta > alpha, skip the rest of this node

 http://homepage.ufp.pt/jtorres/ensino/ia/al

fabeta.html

http://homepage.ufp.pt/jtorres/ensino/ia/alfabeta.html

Equivalent states

 There may be more than one way to get to a

particular game state

 Also, many games have symmetric states

 Example: board rotations in Tic-Tac-Toe

 How to detect if we’ve already evaluated a state?

 Use a hash function, check for collisions

Approximate methods

 Even with alpha-beta pruning and equivalent

states, state space is still way too big for DFS

for anything more complicated than checkers

 Now we’ll talk about approximate methods –

no longer guarantee right answer

Evaluation functions

 Instead of DFSing all the way to goal states,

use a stopping depth

 If we’ve searched D levels and haven’t hit an

end state, use a heuristic (evaluation

function) to guess state value

 This is how humans play chess – we just plan a

few moves ahead, to states that seem good

 Experts have a deeper stopping depth and

a better evaluation function than

beginners

Picking a heuristic

 Option 1: Use your knowledge about the game

 Chess: pieces remaining, square control,

mobility, pawn structure…

 Option 2: Use supervised machine learning

 Use a database of previous games to see which

positions tended to lead to victory/defeat

 Have game play itself and learn over time

Approximate pruning

 Use another heuristic function to pick which

moves to try

 Again, can be hand-coded or learned

Time limits

 Often there is a time limit for us to make a

move (in the game, or based on the human’s

patience)

 Iterative deepening: Set stopping depth to 1,

then 2, then 3, until we run out of time

Current state of the art:

Connect Four

 “Strongly solved” in 1995 by John Tromp

 “Strongly solved” – unbeatable regardless of

opponent’s actions

Current state of the art:

Checkers

 Chinook became world champion in 1994

 “Weakly solved” in 2007 after 18 years of

computation

 “Weakly solved” – assumes perfect opponent,

may draw rather than win if opponent makes a

risky move

Current state of the art:

Chess

 “Deep Blue” defeated Kasparov in 1997

 “Deep Fritz” defeated Kramnik (World Chess

Champion) in 2006 (2 wins, 4 draws), last

major matchup

 Now even chess programs on mobile phones

play at grandmaster level

Current state of the art:

Othello

 Programs generally much better than humans

 Relatively small search space, hard for

humans to evaluate positions

Current state of the art:

Backgammon

 Current machine learning models rank equal

to humans

 Requires incorporating chance elements and

large search space

Current state of the art:

Go

 Humans far better than computers!

 ~360 possible moves per position

 Computers ok in last 10 years, better than

amateurs but not competitive with experts

Homework: 2-move TTT

 Modify Tic-Tac-Toe program such that each

player takes two turns at a time

 How do we change the minimax procedure?

Does the game still end in a draw?

