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Last 2 weeks recap: Graphs

 Graphs represent pairwise relationships

 Directed/undirected, weighted/unweights

 Common algorithms:

 Shortest path

 Importance/centrality (pagerank)

 Strongly connected components

 Spanning tree



Homework: Superbull

 http://usaco.org/index.php?page=viewproblem2&cpid=531

http://usaco.org/index.php?page=viewproblem2&cpid=531


Planning with an adversary

 We’ve talked about using graphs for planning

 Find best plan to goal state using shortest path

 But often we aren’t the only ones trying to 

accomplish a goal!

 Playing games

 Sharing resources, e.g. internet congestion

 Game playing is a type of adversarial search



A simple game

 Player 1 picks the color

 Player 2 picks the shape

P1 wins 

$20

P1 wins 

$10

P1 loses 

$20

P1 wins

$5



Adversarial search

 We might not be able to get to the best 

outcome anymore

 Assume that other player will act optimally, 

and make the more that will allow them to 

cause the least damage to us



Our game as a tree

P1 wins 

$20

P1 wins 

$10

P1 loses 

$20

P1 wins

$5

P2 P2

P1



Our game as a tree

20 10-20 5

P2 P2

P1



Our game as a tree

20 10-20 5

P2:-20 P2:5

P1:5



Our game as a tree

Min Min

Max



Minimax

 https://www.youtube.com/watch?v=zDskcx8FStA

https://www.youtube.com/watch?v=zDskcx8FStA


Minimax search

NodeValue(node, depth)

if node is a leaf

return node.value

if depth % 2 == 0

return max(NodeValue(child1),NodeValue(child2))

else

return min(NodeValue(child1),NodeValue(child2))



Minimax for Tic-Tac-Toe



Problems with pure minimax

 Minimax guarantees that we’ll choose the 

best move

 Assuming other player acts optimally, we 

can’t lose any (fair) game!

 BUT number of possible states may explode

 Chess has ~35 moves, ~40 move game –

1062 states

 How to cut down on the number of states we 

need to explore?



Pruning



Alpha-beta pruning

 Can keep track at each node of a lower 

(alpha) and upper (beta) limit on when this 

node will be useful

 If beta > alpha, skip the rest of this node

 http://homepage.ufp.pt/jtorres/ensino/ia/al

fabeta.html

http://homepage.ufp.pt/jtorres/ensino/ia/alfabeta.html


Equivalent states

 There may be more than one way to get to a 

particular game state

 Also, many games have symmetric states

 Example: board rotations in Tic-Tac-Toe

 How to detect if we’ve already evaluated a state?

 Use a hash function, check for collisions



Approximate methods

 Even with alpha-beta pruning and equivalent 

states, state space is still way too big for DFS 

for anything more complicated than checkers

 Now we’ll talk about approximate methods –

no longer guarantee right answer



Evaluation functions

 Instead of DFSing all the way to goal states, 

use a stopping depth

 If we’ve searched D levels and haven’t hit an 

end state, use a heuristic (evaluation 

function) to guess state value

 This is how humans play chess – we just plan a 

few moves ahead, to states that seem good

 Experts have a deeper stopping depth and 

a better evaluation function than 

beginners



Picking a heuristic

 Option 1: Use your knowledge about the game

 Chess: pieces remaining, square control, 

mobility, pawn structure…

 Option 2: Use supervised machine learning

 Use a database of previous games to see which 

positions tended to lead to victory/defeat

 Have game play itself and learn over time



Approximate pruning

 Use another heuristic function to pick which 

moves to try

 Again, can be hand-coded or learned



Time limits

 Often there is a time limit for us to make a 

move (in the game, or based on the human’s 

patience)

 Iterative deepening: Set stopping depth to 1, 

then 2, then 3, until we run out of time



Current state of the art:

Connect Four

 “Strongly solved” in 1995 by John Tromp

 “Strongly solved” – unbeatable regardless of 

opponent’s actions



Current state of the art:

Checkers

 Chinook became world champion in 1994

 “Weakly solved” in 2007 after 18 years of 

computation

 “Weakly solved” – assumes perfect opponent, 

may draw rather than win if opponent makes a 

risky move



Current state of the art:

Chess

 “Deep Blue” defeated Kasparov in 1997

 “Deep Fritz” defeated Kramnik (World Chess 

Champion) in 2006 (2 wins, 4 draws), last 

major matchup

 Now even chess programs on mobile phones 

play at grandmaster level



Current state of the art:

Othello

 Programs generally much better than humans

 Relatively small search space, hard for 

humans to evaluate positions



Current state of the art:

Backgammon

 Current machine learning models rank equal 

to humans

 Requires incorporating chance elements and 

large search space



Current state of the art:

Go

 Humans far better than computers!

 ~360 possible moves per position

 Computers ok in last 10 years, better than 

amateurs but not competitive with experts



Homework: 2-move TTT 

 Modify Tic-Tac-Toe program such that each 

player takes two turns at a time

 How do we change the minimax procedure? 

Does the game still end in a draw?


