
Game Playing AI
Dr. Baldassano

chrisb@princeton.edu

Yu’s Elite Education

Last 2 weeks recap: Graphs

 Graphs represent pairwise relationships

 Directed/undirected, weighted/unweights

 Common algorithms:

 Shortest path

 Importance/centrality (pagerank)

 Strongly connected components

 Spanning tree

Homework: Superbull

 http://usaco.org/index.php?page=viewproblem2&cpid=531

http://usaco.org/index.php?page=viewproblem2&cpid=531

Planning with an adversary

 We’ve talked about using graphs for planning

 Find best plan to goal state using shortest path

 But often we aren’t the only ones trying to

accomplish a goal!

 Playing games

 Sharing resources, e.g. internet congestion

 Game playing is a type of adversarial search

A simple game

 Player 1 picks the color

 Player 2 picks the shape

P1 wins

$20

P1 wins

$10

P1 loses

$20

P1 wins

$5

Adversarial search

 We might not be able to get to the best

outcome anymore

 Assume that other player will act optimally,

and make the more that will allow them to

cause the least damage to us

Our game as a tree

P1 wins

$20

P1 wins

$10

P1 loses

$20

P1 wins

$5

P2 P2

P1

Our game as a tree

20 10-20 5

P2 P2

P1

Our game as a tree

20 10-20 5

P2:-20 P2:5

P1:5

Our game as a tree

Min Min

Max

Minimax

 https://www.youtube.com/watch?v=zDskcx8FStA

https://www.youtube.com/watch?v=zDskcx8FStA

Minimax search

NodeValue(node, depth)

if node is a leaf

return node.value

if depth % 2 == 0

return max(NodeValue(child1),NodeValue(child2))

else

return min(NodeValue(child1),NodeValue(child2))

Minimax for Tic-Tac-Toe

Problems with pure minimax

 Minimax guarantees that we’ll choose the

best move

 Assuming other player acts optimally, we

can’t lose any (fair) game!

 BUT number of possible states may explode

 Chess has ~35 moves, ~40 move game –

1062 states

 How to cut down on the number of states we

need to explore?

Pruning

Alpha-beta pruning

 Can keep track at each node of a lower

(alpha) and upper (beta) limit on when this

node will be useful

 If beta > alpha, skip the rest of this node

 http://homepage.ufp.pt/jtorres/ensino/ia/al

fabeta.html

http://homepage.ufp.pt/jtorres/ensino/ia/alfabeta.html

Equivalent states

 There may be more than one way to get to a

particular game state

 Also, many games have symmetric states

 Example: board rotations in Tic-Tac-Toe

 How to detect if we’ve already evaluated a state?

 Use a hash function, check for collisions

Approximate methods

 Even with alpha-beta pruning and equivalent

states, state space is still way too big for DFS

for anything more complicated than checkers

 Now we’ll talk about approximate methods –

no longer guarantee right answer

Evaluation functions

 Instead of DFSing all the way to goal states,

use a stopping depth

 If we’ve searched D levels and haven’t hit an

end state, use a heuristic (evaluation

function) to guess state value

 This is how humans play chess – we just plan a

few moves ahead, to states that seem good

 Experts have a deeper stopping depth and

a better evaluation function than

beginners

Picking a heuristic

 Option 1: Use your knowledge about the game

 Chess: pieces remaining, square control,

mobility, pawn structure…

 Option 2: Use supervised machine learning

 Use a database of previous games to see which

positions tended to lead to victory/defeat

 Have game play itself and learn over time

Approximate pruning

 Use another heuristic function to pick which

moves to try

 Again, can be hand-coded or learned

Time limits

 Often there is a time limit for us to make a

move (in the game, or based on the human’s

patience)

 Iterative deepening: Set stopping depth to 1,

then 2, then 3, until we run out of time

Current state of the art:

Connect Four

 “Strongly solved” in 1995 by John Tromp

 “Strongly solved” – unbeatable regardless of

opponent’s actions

Current state of the art:

Checkers

 Chinook became world champion in 1994

 “Weakly solved” in 2007 after 18 years of

computation

 “Weakly solved” – assumes perfect opponent,

may draw rather than win if opponent makes a

risky move

Current state of the art:

Chess

 “Deep Blue” defeated Kasparov in 1997

 “Deep Fritz” defeated Kramnik (World Chess

Champion) in 2006 (2 wins, 4 draws), last

major matchup

 Now even chess programs on mobile phones

play at grandmaster level

Current state of the art:

Othello

 Programs generally much better than humans

 Relatively small search space, hard for

humans to evaluate positions

Current state of the art:

Backgammon

 Current machine learning models rank equal

to humans

 Requires incorporating chance elements and

large search space

Current state of the art:

Go

 Humans far better than computers!

 ~360 possible moves per position

 Computers ok in last 10 years, better than

amateurs but not competitive with experts

Homework: 2-move TTT

 Modify Tic-Tac-Toe program such that each

player takes two turns at a time

 How do we change the minimax procedure?

Does the game still end in a draw?

