Graph Algorithms:
Part 1

Dr. Baldassano

chrisb@princeton.edu
Yu’s Elite Education



Last week recap: Machine
Learning

» Unsupervised learning: cluster datapoints
without labels

» K-means clustering

» Hierarchical clustering

» Supervised learning: learn to predict labels of
datapoints

» Classification

» Regression




Homework: Titanic ages

» Download
www.chrisbaldassano.com/class/titanic.txt
which gives age of each passenger and whether
they survived (1) or died(0)

» Generate the best (one-layer) decision tree on
this data that gives the highest accuracy

» E.g. if age < 20 guess survived, else guess died
» | can get ~62% accuracy



http://www.chrisbaldassano.com/class/titanic.txt

Modeling relationships

» Many real-world datasets involve relationships
between pairs of items

» Distances between locations
» Social networks
» Moves between game states

» Neuron fibers connecting brain regions




Protein-protein interactions

Reference: Jeong et al, Nature Review | Genetics

Protein-protein interaction network

\



Social networks

Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000.
Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social
network. Circles with red borders denote women and circles with blue borders denote men. The interior color of the
circles indicates the person’s obesity status: yellow denotes an obese person (body-mass index, >30) and green de-
notes a nonobese person. The size of each circle is proportional to the person’s body-mass index. The colors of the
ties between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange
denotes a familial tie.




—

=
2
Q
L
T
i
=




The Internet

07.205.230.105
07.205. 23023

07.205.230.117

205,204
Q2

2 ." 1
/ % 07.205.230.174
N 07.

SN2

- 0 zn 2
07.205.230.11 4 4 07.205..
raosagig LA\
07.205. 250155
07.2

07.205.249.10] 201.205.230.1%9




Uber rides




Graphs

» In Computer Science we describe pairwise
relationships as a “graph”

» Graphs are made up of two types of things:
» Nodes (or vertices), which represent items

» Edges, which represent relationships




Types of graphs

» Weighted vs. unweighted

» Unweighted graphs have edges that either exist
or don’t exist, between each pair of nodes

» Weighted graphs have a edges with a real-valued
strength



Types of graphs

» Directed vs. undirected

» Undirected graphs have edges that are
symmetrical - edge(a,b) = edge(b,a)

» Directed graphs have edges with different
strengths in each direction

o




Representing graphs

» Two ways to store graphs in a computer:

» Adjacency matrix: adj[a][b] = edge between
nodes a and b

» If unweighted, adj[a][b] =0 or 1
» If undirected, adj[a][b] = adj[b][a]

» Adjacency list: adj[a] = set of a’s neighbors
(nodes with edges connected to a)

» For weighted graph, also need to keep track of
weights




Algorithms on Graphs

» Kinds of algorithms on graphs:
» Finding shortest paths between nodes
» Finding clusters
» Finding spanning trees
» Finding important nodes

» We’ll focus on shortest paths today, look at
other problems next week




Shortest paths

» Why do we care about finding the shortest path
between nodes?

» Distance graph: shortest path is literally the
shortest distance to travel (e.g. airplane flights)

» Graph of robot states: shortest path is most
efficient sequence of actions to reach goal

» Social network: find how closely two people know
each other (e.g. Bacon number)

» Computer network: shortest path is best route for
sending information between two servers




Starting simple

» Let’s take the simplest case: in undirected,
unweighted graph, find shortest path from
node a to node b




Adding weights

» What happens if edges are weighted?

» Need to replace queue with priority queue
(often implemented as heap)

» This is Dijkstra’s algorithm




Adding hints

» So far we’ve looked at “blind” searches that

don’t know anything about what nodes are
likely to be on the solution path

» In some cases, like physical distances, we
have a good guess about which way to explore

» https://qgiao.github.io/PathFinding.js/visual/



https://qiao.github.io/PathFinding.js/visual/

Informed search: A*

» Dijkstra: expand node with lowest distance
from source, g(n)

» A*: expand node with lowest estimated
distance from source to destination

» f(n) = g(n) + h(n)

» New term h(n) is a heuristic estimate of
distance from node n to destination

» For algorithm to work, heuristic must always
be optimistic (underestimate distance to
destination)




A* with distances

» For physical distances, we usually define
h(n) = straight-line distance from n to goal

» This will always be optimistic, since it ignores
obstacles

» https://qgiao.github.io/PathFinding.js/visual/

» Note that Dijkstra is A* with the very
optimistic heuristic h(n)=0



https://qiao.github.io/PathFinding.js/visual/

Example: NJ cities




Heuristics in other cases

» Motion planning: distance to goal state,
ignoring obstacles




Heuristics in other cases

» Game playing: number of misplaced items

1

3

4

7

Start State

Goal State




Learning heuristics

» Can use machine learning methods from last
week to learn heuristics for complicated
situations

» For example, given some features about
current chess position (pieces still on the
board, number of pieces currently
threatened...) can learn to predict number of
moves to checkmate




Olympiad Problems

» Piggyback:
http://www.usaco.org/index.php?’page=viewp
roblem2&cpid=491

» Cow route:
http://www.usaco.org/index.php?page=viewp
roblem2&cpid=51



http://www.usaco.org/index.php?page=viewproblem2&cpid=491
http://www.usaco.org/index.php?page=viewproblem2&cpid=51

Homework: Flight routes

» Download the time-table of flights:
[Departing] [Depart HHMM] [Arriving] [Arrive HHMM

» Given a starting and ending city, compute the fastes
set of flights to get from one to the other, assuming
you need 60 minutes between flights

» For example, Paris to Houston




