
Graph Algorithms: 

Part 1
Dr. Baldassano

chrisb@princeton.edu

Yu’s Elite Education



Last week recap: Machine 

Learning

 Unsupervised learning: cluster datapoints

without labels

 K-means clustering

 Hierarchical clustering

 Supervised learning: learn to predict labels of 

datapoints

 Classification

 Regression



Homework: Titanic ages

 Download 

www.chrisbaldassano.com/class/titanic.txt

which gives age of each passenger and whether 

they survived (1) or died(0)

 Generate the best (one-layer) decision tree on 

this data that gives the highest accuracy

 E.g. if age < 20 guess survived, else guess died

 I can get ~62% accuracy

http://www.chrisbaldassano.com/class/titanic.txt


Modeling relationships

 Many real-world datasets involve relationships 

between pairs of items

 Distances between locations

 Social networks

 Moves between game states

 Neuron fibers connecting brain regions



Protein-protein interactions



Social networks



Facebook



The Internet



Uber rides



Graphs

 In Computer Science we describe pairwise

relationships as a “graph”

 Graphs are made up of two types of things:

 Nodes (or vertices), which represent items

 Edges, which represent relationships



Types of graphs

 Weighted vs. unweighted

 Unweighted graphs have edges that either exist 

or don’t exist, between each pair of nodes

 Weighted graphs have a edges with a real-valued 

strength

2

-0.5
0



Types of graphs

 Directed vs. undirected

 Undirected graphs have edges that are 

symmetrical – edge(a,b) = edge(b,a)

 Directed graphs have edges with different 

strengths in each direction



Representing graphs

 Two ways to store graphs in a computer:

 Adjacency matrix: adj[a][b] = edge between 

nodes a and b

 If unweighted, adj[a][b] = 0 or 1

 If undirected, adj[a][b] = adj[b][a]

 Adjacency list: adj[a] = set of a’s neighbors 

(nodes with edges connected to a)

 For weighted graph, also need to keep track of 

weights



Algorithms on Graphs

 Kinds of algorithms on graphs:

 Finding shortest paths between nodes

 Finding clusters

 Finding spanning trees

 Finding important nodes

 We’ll focus on shortest paths today, look at 

other problems next week



Shortest paths

 Why do we care about finding the shortest path 

between nodes?

 Distance graph: shortest path is literally the 

shortest distance to travel (e.g. airplane flights)

 Graph of robot states: shortest path is most 

efficient sequence of actions to reach goal

 Social network: find how closely two people know 

each other (e.g. Bacon number)

 Computer network: shortest path is best route for 

sending information between two servers



Starting simple

 Let’s take the simplest case: in undirected, 

unweighted graph, find shortest path from 

node a to node b



Adding weights

 What happens if edges are weighted?

 Need to replace queue with priority queue 

(often implemented as heap)

 This is Dijkstra’s algorithm



Adding hints

 So far we’ve looked at “blind” searches that 

don’t know anything about what nodes are 

likely to be on the solution path

 In some cases, like physical distances, we 

have a good guess about which way to explore

 https://qiao.github.io/PathFinding.js/visual/

https://qiao.github.io/PathFinding.js/visual/


Informed search: A*

 Dijkstra: expand node with lowest distance 

from source, g(n)

 A*: expand node with lowest estimated 

distance from source to destination

 f(n) = g(n) + h(n)

 New term h(n) is a heuristic estimate of 

distance from node n to destination

 For algorithm to work, heuristic must always 

be optimistic (underestimate distance to 

destination)



A* with distances

 For physical distances, we usually define    

h(n) = straight-line distance from n to goal

 This will always be optimistic, since it ignores 

obstacles

 https://qiao.github.io/PathFinding.js/visual/

 Note that Dijkstra is A* with the very 

optimistic heuristic h(n)=0

https://qiao.github.io/PathFinding.js/visual/


Example: NJ cities



Heuristics in other cases

 Motion planning: distance to goal state, 

ignoring obstacles



Heuristics in other cases

 Game playing: number of misplaced items



Learning heuristics

 Can use machine learning methods from last 

week to learn heuristics for complicated 

situations

 For example, given some features about 

current chess position (pieces still on the 

board, number of pieces currently 

threatened…) can learn to predict number of 

moves to checkmate



Olympiad Problems

 Piggyback: 

http://www.usaco.org/index.php?page=viewp

roblem2&cpid=491

 Cow route: 

http://www.usaco.org/index.php?page=viewp

roblem2&cpid=51

http://www.usaco.org/index.php?page=viewproblem2&cpid=491
http://www.usaco.org/index.php?page=viewproblem2&cpid=51


Homework: Flight routes

 Download the time-table of flights:

[Departing] [Depart HHMM] [Arriving] [Arrive HHMM]

 Given a starting and ending city, compute the fastest 

set of flights to get from one to the other, assuming 

you need 60 minutes between flights

 For example, Paris to Houston


