
Graph Algorithms:

Part 1
Dr. Baldassano

chrisb@princeton.edu

Yu’s Elite Education

Last week recap: Machine

Learning

 Unsupervised learning: cluster datapoints

without labels

 K-means clustering

 Hierarchical clustering

 Supervised learning: learn to predict labels of

datapoints

 Classification

 Regression

Homework: Titanic ages

 Download

www.chrisbaldassano.com/class/titanic.txt

which gives age of each passenger and whether

they survived (1) or died(0)

 Generate the best (one-layer) decision tree on

this data that gives the highest accuracy

 E.g. if age < 20 guess survived, else guess died

 I can get ~62% accuracy

http://www.chrisbaldassano.com/class/titanic.txt

Modeling relationships

 Many real-world datasets involve relationships

between pairs of items

 Distances between locations

 Social networks

 Moves between game states

 Neuron fibers connecting brain regions

Protein-protein interactions

Social networks

Facebook

The Internet

Uber rides

Graphs

 In Computer Science we describe pairwise

relationships as a “graph”

 Graphs are made up of two types of things:

 Nodes (or vertices), which represent items

 Edges, which represent relationships

Types of graphs

 Weighted vs. unweighted

 Unweighted graphs have edges that either exist

or don’t exist, between each pair of nodes

 Weighted graphs have a edges with a real-valued

strength

2

-0.5
0

Types of graphs

 Directed vs. undirected

 Undirected graphs have edges that are

symmetrical – edge(a,b) = edge(b,a)

 Directed graphs have edges with different

strengths in each direction

Representing graphs

 Two ways to store graphs in a computer:

 Adjacency matrix: adj[a][b] = edge between

nodes a and b

 If unweighted, adj[a][b] = 0 or 1

 If undirected, adj[a][b] = adj[b][a]

 Adjacency list: adj[a] = set of a’s neighbors

(nodes with edges connected to a)

 For weighted graph, also need to keep track of

weights

Algorithms on Graphs

 Kinds of algorithms on graphs:

 Finding shortest paths between nodes

 Finding clusters

 Finding spanning trees

 Finding important nodes

 We’ll focus on shortest paths today, look at

other problems next week

Shortest paths

 Why do we care about finding the shortest path

between nodes?

 Distance graph: shortest path is literally the

shortest distance to travel (e.g. airplane flights)

 Graph of robot states: shortest path is most

efficient sequence of actions to reach goal

 Social network: find how closely two people know

each other (e.g. Bacon number)

 Computer network: shortest path is best route for

sending information between two servers

Starting simple

 Let’s take the simplest case: in undirected,

unweighted graph, find shortest path from

node a to node b

Adding weights

 What happens if edges are weighted?

 Need to replace queue with priority queue

(often implemented as heap)

 This is Dijkstra’s algorithm

Adding hints

 So far we’ve looked at “blind” searches that

don’t know anything about what nodes are

likely to be on the solution path

 In some cases, like physical distances, we

have a good guess about which way to explore

 https://qiao.github.io/PathFinding.js/visual/

https://qiao.github.io/PathFinding.js/visual/

Informed search: A*

 Dijkstra: expand node with lowest distance

from source, g(n)

 A*: expand node with lowest estimated

distance from source to destination

 f(n) = g(n) + h(n)

 New term h(n) is a heuristic estimate of

distance from node n to destination

 For algorithm to work, heuristic must always

be optimistic (underestimate distance to

destination)

A* with distances

 For physical distances, we usually define

h(n) = straight-line distance from n to goal

 This will always be optimistic, since it ignores

obstacles

 https://qiao.github.io/PathFinding.js/visual/

 Note that Dijkstra is A* with the very

optimistic heuristic h(n)=0

https://qiao.github.io/PathFinding.js/visual/

Example: NJ cities

Heuristics in other cases

 Motion planning: distance to goal state,

ignoring obstacles

Heuristics in other cases

 Game playing: number of misplaced items

Learning heuristics

 Can use machine learning methods from last

week to learn heuristics for complicated

situations

 For example, given some features about

current chess position (pieces still on the

board, number of pieces currently

threatened…) can learn to predict number of

moves to checkmate

Olympiad Problems

 Piggyback:

http://www.usaco.org/index.php?page=viewp

roblem2&cpid=491

 Cow route:

http://www.usaco.org/index.php?page=viewp

roblem2&cpid=51

http://www.usaco.org/index.php?page=viewproblem2&cpid=491
http://www.usaco.org/index.php?page=viewproblem2&cpid=51

Homework: Flight routes

 Download the time-table of flights:

[Departing] [Depart HHMM] [Arriving] [Arrive HHMM]

 Given a starting and ending city, compute the fastest

set of flights to get from one to the other, assuming

you need 60 minutes between flights

 For example, Paris to Houston

