
Graph Algorithms: 

Part 2
Dr. Baldassano

chrisb@princeton.edu

Yu’s Elite Education



Graphs

 In Computer Science we describe pairwise

relationships as a “graph”

 Graphs are made up of two types of things:

 Nodes (or vertices), which represent items

 Edges, which represent relationships



Types of graphs

 Weighted vs. unweighted

 Unweighted graphs have edges that either exist 

or don’t exist, between each pair of nodes

 Weighted graphs have a edges with a real-valued 

strength

2

-0.5
0



Types of graphs

 Directed vs. undirected

 Undirected graphs have edges that are 

symmetrical – edge(a,b) = edge(b,a)

 Directed graphs have edges with different 

strengths in each direction



Representing graphs

 Two ways to store graphs in a computer:

 Adjacency matrix: adj[a][b] = edge between 

nodes a and b

 If unweighted, adj[a][b] = 0 or 1

 If undirected, adj[a][b] = adj[b][a]

 Adjacency list: adj[a] = set of a’s neighbors 

(nodes with edges connected to a)

 For weighted graph, also need to keep track of 

weights



Homework: Flight routes

 Download the time-table of flights:

[Departing] [Depart HHMM] [Arriving] [Arrive HHMM]

 Given a starting and ending city, compute the fastest 

set of flights to get from one to the other, assuming 

you need 60 minutes between flights

 For example, Paris to Houston



Pagerank

 How do we determine the importance of 

individual nodes in a graph?

 Google became famous by coming up with a 

solution to this problem called “Pagerank”

 Basic idea: if a lot of important pages link to 

me, then I’m important!



Pagerank model

 Assume that people randomly click on links in 

webpages

 Where will most people end up?

 Example:

 Page A has 4 links, 1 of which is to C

 Page B has 2 links, 1 of which is to C

 PR(C) = PR(A)/4 + PR(B)/2



Pagerank model

 One other tweak: assume that with 

probability 1-d, people just jump to a random 

website

 This avoids issues with pages that don’t 

have links, and makes solving easier

 Final equation:



Calculating Pagerank

 Pagerank has a circular definition, so it is 

hard to calculate

 Can start with uniform Pageranks on all 

pages, then iterate Pagerank equations

 Let’s code Pagerank for wikipedia



Strongly connected nodes

 In some directed graphs, we can move from 

every node to every other node

 We call this a “strongly connected” graph

 Which of these graphs are strongly connected?



Strongly connected 

components

 We can divide any graph into components that 

are strongly connected

 We can “move freely” within these 

components, but once we leave a component 

we may not be able to get back



Tarjan’s algorithm for SCC

 Calculate 2 numbers at each node:

 An index

 Lowest index in my SCC

 Perform DFS, update lowest index when:

 We find a new node

 We find an old node in our SCC

 If index == lowest index after DFS, then 

create new SCC with this root



Tarjan’s algorithm: Example



Tarjan’s algorithm: Big O

 Equivalent to two depth-first traversals (one 

forward, one backward)

 DFS visits every node and every edge

 O(N+E)



Olympiad Example

 Grass Cownoisseur: 

http://usaco.org/index.php?page=viewproble

m2&cpid=516

http://usaco.org/index.php?page=viewproblem2&cpid=516


Spanning tree

 For a connected, undirected graph, how many 

edges can we remove and still have a 

connected graph?



Minimum spanning tree

 If edges have weights, we want to select the 

spanning tree with the smallest total edge 

weight

8

7 6

5
1

3

2

4



Applications of minimum 

spanning tree

 Broadcast paths in the internet

 Planning a road system

 Hierarchical clustering

 Taxonomy and evolutionary biology



Prim’s algorithm

 Surprisingly simple!

 Pick a random starting node

 Add minimum edge

 Keep adding smallest edge that connects to 

an unconnected node



Minimum spanning tree

8

7 6

5
1

3

2

4



Prim’s Big O

 Depends on how we search for the next edge

 If we keep a heap of nodes with keys equal to 

their minimum edge, we will perform a 

decrease-key operation for each edge on a 

size N heap

 O(E log N)



Homework

 Superbull: 

http://usaco.org/index.php?page=viewproble

m2&cpid=531

 Hint: if teams are nodes, tournament can be 

described by a spanning tree

http://usaco.org/index.php?page=viewproblem2&cpid=531

