
Hashing
Dr. Baldassano

chrisb@princeton.edu

Yu’s Elite Education



Last week recap

 Linked lists

 Advantages/Disadvantages over arrays

 Singly vs. doubly-linked

 Queues

 FIFO

 Stacks

 FILO



Homework: Find list median



Associative arrays

 Regular array/list: maps nonnegative integer 

keys onto values, e.g. states[3] = ‘NJ’

 Associative arrays: map any key onto values, 

e.g. capitals[‘NJ’] = ‘Trenton’

 Want to be able to add, delete, and modify 

each key/value pairing

 Called dictionaries in Python

 Can also be used without values (sets)



Associative arrays

 How to implement associative arrays?

 Can just store a list of key-value pairs

 Big-O for add, delete, find, modify?

 Add: O(1)

 Find, modify, delete: O(N)

 Memory: O(N)

Index Key Value

0 NJ Trenton

1 NY Albany

2 PA Harrisburg



Speeding up find and delete

 Goal: Find items in O(1) time, without 

increasing memory requirement too much

 Strategy: Convert every key to a nonnegative 

index, then use a regular array

 Example:

 Initialize capitals to be empty length-10 array

 When adding ‘NJ’, plug ‘NJ’ into a function 

f(‘NJ’) = 4

 Store ‘Trenton’ in capitals[4]



Hash function

 The function converting keys into indices is 

called the hash function

 Input: Keys (may be any type)

 Output: Nonnegative index where we should 

store the value of that key

 Ideally, we want all keys to be mapped to 

different indices



Example: Website logins

 Four users sign up for website:

 Praneel, Areeq, Jimmy, Allen

 f(Praneel) = 5, f(Areeq) = 2, f(Jimmy) = 0, f(Allen) = 3

 Store their passwords in hash table



Big-O for hash table

 If hash function successfully maps all keys to 

different indices, then:

 Add: O(1)

 Find: O(1)

 Modify: O(1)

 Delete: O(1)

 What’s the catch??

 Will need to use extra memory: for good hash 

function, memory should still be O(N)



Designing a hash function

 When picking a hash function f, we want it to 

distribute keys uniformly over the array



Collisions

 As long as our array is smaller than the total 

number of possible keys (e.g. all possible 

usernames), there will always be collisions

 Collision occurs when f(key1) = f(key2)

 Collisions more likely to happen if:

 Array is not big enough

 Hash function isn’t uniform

 What do we do when we go to add a 

key/value but another key is already there?



Dealing with collisions:

Open Addressing

 If there is a key/value in your spot, just use 

the next open spot



Dealing with collisions: 

Chaining

 Chaining: Each array bucket contains a list of 

all key/values mapped to that bucket

 Usually used a linked list



Dealing with collisions

 Open addressing easiest when keys are small 

and have at least twice as many memory slots 

as keys

 Otherwise, chaining better:

 Only stores pointers in array

 Can have more keys than memory slots

 Can handle variable-sized data



Python hashing example



Olympiad Problem

 Censoring: 

http://www.usaco.org/index.php?page=viewproblem2&

cpid=533

http://www.usaco.org/index.php?page=viewproblem2&cpid=533


Hashes in cryptography

 Often we want to prove that two pieces of 

data match, without looking at them

 Very common example: passwords

 Websites/computers want to check if the 

password you’re entering now matches the one 

you signed up with

 BUT don’t want to just store a copy of 

password, otherwise a hacker/insider could 

mass-copy passwords out of the database



Hashes in cryptography

 Solution: only store a hash of the password

 A good hash function will rarely have 

collisions – so if password hashes match, 

passwords almost certainly match!

 Cryptographic hashes also designed to make 

sure they are hard to reverse (hard to get 

from hash to password)



Attacking a hash

 Let’s say we lost our password and only have 

the hash (or we’re doing something evil)

 How can we get password just given the hash?

 Could just try every possible password, and 

store all hashes

 This will take a looong time, but we only 

ever have to do it once

 Then we can use this table many times for 

this hash function

 Called “Rainbow Tables”



Python hash attack example



“Opposite” kind of hashing

 For hash tables, we want to avoid collisions

 When might we want collisions?

 Main use: detecting nearest neighbors

 If we map similar values to the same bucket, 

hashing will find close neighbors

 Called locality-sensitive hashing



Examples of LSH

 Finding near-duplicates

 Detecting plagiarism

 Finding other sizes of image

 Avoid duplicate search results

 Recommender systems

 Find similar customers, see what they bought

 Find similar movies to your favorites



Finding closest neighbors 

with LSH



LSH for detecting breaking 

news on Twitter

Incoming Tweet
Closest previous 

Tweet
Similarity Score

@Real_Liam_Payne i

wanna be your female 

pal

i. wanna be your best 

friend so follow me :)
0.385

RT @damnitstrue: Life 

is for living, not for 

stressing.

RT Life is for living, 

not for stressing.
0.99

East Timor quake 

leaves Darwin 

shaking: An 

earthquake off the 

coast of East Timor

Everybody leaves 

eventually
0.129



Assignment: Anagrams

 Given a dictionary 

http://www.codeabbey.com/data/words.txt

divide it into groups of anagrams

 Example: tea, asleep, plus, ate, please

 [tea, ate], [asleep,please], [plus]

http://www.codeabbey.com/data/words.txt

