
Hashing
Dr. Baldassano

chrisb@princeton.edu

Yu’s Elite Education



Last week recap

 Linked lists

 Advantages/Disadvantages over arrays

 Singly vs. doubly-linked

 Queues

 FIFO

 Stacks

 FILO



Homework: Find list median



Associative arrays

 Regular array/list: maps nonnegative integer 

keys onto values, e.g. states[3] = ‘NJ’

 Associative arrays: map any key onto values, 

e.g. capitals[‘NJ’] = ‘Trenton’

 Want to be able to add, delete, and modify 

each key/value pairing

 Called dictionaries in Python

 Can also be used without values (sets)



Associative arrays

 How to implement associative arrays?

 Can just store a list of key-value pairs

 Big-O for add, delete, find, modify?

 Add: O(1)

 Find, modify, delete: O(N)

 Memory: O(N)

Index Key Value

0 NJ Trenton

1 NY Albany

2 PA Harrisburg



Speeding up find and delete

 Goal: Find items in O(1) time, without 

increasing memory requirement too much

 Strategy: Convert every key to a nonnegative 

index, then use a regular array

 Example:

 Initialize capitals to be empty length-10 array

 When adding ‘NJ’, plug ‘NJ’ into a function 

f(‘NJ’) = 4

 Store ‘Trenton’ in capitals[4]



Hash function

 The function converting keys into indices is 

called the hash function

 Input: Keys (may be any type)

 Output: Nonnegative index where we should 

store the value of that key

 Ideally, we want all keys to be mapped to 

different indices



Example: Website logins

 Four users sign up for website:

 Praneel, Areeq, Jimmy, Allen

 f(Praneel) = 5, f(Areeq) = 2, f(Jimmy) = 0, f(Allen) = 3

 Store their passwords in hash table



Big-O for hash table

 If hash function successfully maps all keys to 

different indices, then:

 Add: O(1)

 Find: O(1)

 Modify: O(1)

 Delete: O(1)

 What’s the catch??

 Will need to use extra memory: for good hash 

function, memory should still be O(N)



Designing a hash function

 When picking a hash function f, we want it to 

distribute keys uniformly over the array



Collisions

 As long as our array is smaller than the total 

number of possible keys (e.g. all possible 

usernames), there will always be collisions

 Collision occurs when f(key1) = f(key2)

 Collisions more likely to happen if:

 Array is not big enough

 Hash function isn’t uniform

 What do we do when we go to add a 

key/value but another key is already there?



Dealing with collisions:

Open Addressing

 If there is a key/value in your spot, just use 

the next open spot



Dealing with collisions: 

Chaining

 Chaining: Each array bucket contains a list of 

all key/values mapped to that bucket

 Usually used a linked list



Dealing with collisions

 Open addressing easiest when keys are small 

and have at least twice as many memory slots 

as keys

 Otherwise, chaining better:

 Only stores pointers in array

 Can have more keys than memory slots

 Can handle variable-sized data



Python hashing example



Olympiad Problem

 Censoring: 

http://www.usaco.org/index.php?page=viewproblem2&

cpid=533

http://www.usaco.org/index.php?page=viewproblem2&cpid=533


Hashes in cryptography

 Often we want to prove that two pieces of 

data match, without looking at them

 Very common example: passwords

 Websites/computers want to check if the 

password you’re entering now matches the one 

you signed up with

 BUT don’t want to just store a copy of 

password, otherwise a hacker/insider could 

mass-copy passwords out of the database



Hashes in cryptography

 Solution: only store a hash of the password

 A good hash function will rarely have 

collisions – so if password hashes match, 

passwords almost certainly match!

 Cryptographic hashes also designed to make 

sure they are hard to reverse (hard to get 

from hash to password)



Attacking a hash

 Let’s say we lost our password and only have 

the hash (or we’re doing something evil)

 How can we get password just given the hash?

 Could just try every possible password, and 

store all hashes

 This will take a looong time, but we only 

ever have to do it once

 Then we can use this table many times for 

this hash function

 Called “Rainbow Tables”



Python hash attack example



“Opposite” kind of hashing

 For hash tables, we want to avoid collisions

 When might we want collisions?

 Main use: detecting nearest neighbors

 If we map similar values to the same bucket, 

hashing will find close neighbors

 Called locality-sensitive hashing



Examples of LSH

 Finding near-duplicates

 Detecting plagiarism

 Finding other sizes of image

 Avoid duplicate search results

 Recommender systems

 Find similar customers, see what they bought

 Find similar movies to your favorites



Finding closest neighbors 

with LSH



LSH for detecting breaking 

news on Twitter

Incoming Tweet
Closest previous 

Tweet
Similarity Score

@Real_Liam_Payne i

wanna be your female 

pal

i. wanna be your best 

friend so follow me :)
0.385

RT @damnitstrue: Life 

is for living, not for 

stressing.

RT Life is for living, 

not for stressing.
0.99

East Timor quake 

leaves Darwin 

shaking: An 

earthquake off the 

coast of East Timor

Everybody leaves 

eventually
0.129



Assignment: Anagrams

 Given a dictionary 

http://www.codeabbey.com/data/words.txt

divide it into groups of anagrams

 Example: tea, asleep, plus, ate, please

 [tea, ate], [asleep,please], [plus]

http://www.codeabbey.com/data/words.txt

