
Heaps
Dr. Baldassano

Yu’s Elite Education

Last week recap

 Dynamic Programming: strategy for creating

an algorithm when a problem:

 Can be broken into optimal subproblems

 Subproblems are non-overlapping

 Moovies assignment

Today: we meet our first data

structure

 A data structure has two key features:

 What kind of data it holds

 What kinds of operations it can do quickly

 Example: an ordered list and an unordered list

both store numbers

 Unordered list: appending is fast, search is slow

 Ordered list: appending is slow, search is fast

Binary Heap

 A binary heap is a data structure that holds

numbers called keys

 Keys might be part of a larger data element

 Supports the following operations:

Operation Time complexity

Find minimum O(1)

Delete minimum O(log n)

Insert O(log n)

Decrease key O(log n)

Uses of heaps

 Sorting: insert all elements, then keep

removing minimum

 As a priority queue: keeping track of the

“highest priority” item to process next

Implementing a heap

 Represent heap as a complete binary tree, with

all children keys greater than their parent

 Note: no ordering among siblings/cousins

Find minimum

 Easy! Minimum is always at the top, just

return it in O(1)

Insert key

 Add new element to next position in

complete array

 Swap child with parent until the heap

ordering is fixed

 Takes O(levels of tree) = O(log N)

Decrease key

 Similar to insertion: swap child with parent

until heap is ordered

 O(log N)

Delete minimum

 Swap minimum with rightmost leaf and delete

 Bubble root down, promoting smaller child

 Again O(log N)

Building a heap from scratch

 We would approximate that inserting N

elements should take O(N log N) time

 But a more careful analysis shows that most

elements in a heap are near the bottom, so

they don’t take many swaps

 Can actually build heap in O(N) time

Actually implementing a heap

 Often store values in array, calculate links

Priority Queue example 1

 We have k sorted arrays of size n each

 Might have broken up a sorting task across

multiple machines in a datacenter

 Merge them into a single sorted array

 O (n*k log k)

Priority Queue example 2

 Given unsorted array, find the k minimum

elements

 Might want to get the 10 best scores from a

very large database

 Or k closest points to some position

 O(n + k log n)

File compression

 Say we are given some text data to store

 If there are 32 letters + punctuation

possibilities, we could represent each letter

as a 5-bit binary codeword (25 = 32)

 Better idea: Use shorter codewords for

frequent letters, longer codewords for

infrequent letters

Huffman encoding

 Count frequencies of each symbol

 Create tree merging least-frequent symbols

 Repeat until all symbols merged

 Path to a symbol is its codeword

 This is a prefix code – don’t need explicit

separators, since no codeword is prefix of

another

Implementing with min heap

 Create heap in O(N) time

 Remove two smallest elements and re-insert

sum of frequencies, until only one left

 O(N log N) in total

Heapsort

 Build heap, then remove minimum N times

 O(N log N), so asymptotically optimal

 https://www.cs.usfca.edu/~galles/visualizati

on/HeapSort.html

https://www.cs.usfca.edu/~galles/visualization/HeapSort.html
https://www.cs.usfca.edu/~galles/visualization/HeapSort.html

Assignment: Near-sorted data

 Given an array for size n that is mostly

sorted: each element is at most k places away

from its correct position

 How can we sort this array efficiently using a

heap?

 What is the Big-O time complexity in terms of

n and k?

