
Heaps
Dr. Baldassano

Yu’s Elite Education

Last week recap

 Dynamic Programming: strategy for creating

an algorithm when a problem:

 Can be broken into optimal subproblems

 Subproblems are non-overlapping

 Moovies assignment

Today: we meet our first data

structure

 A data structure has two key features:

 What kind of data it holds

 What kinds of operations it can do quickly

 Example: an ordered list and an unordered list

both store numbers

 Unordered list: appending is fast, search is slow

 Ordered list: appending is slow, search is fast

Binary Heap

 A binary heap is a data structure that holds

numbers called keys

 Keys might be part of a larger data element

 Supports the following operations:

Operation Time complexity

Find minimum O(1)

Delete minimum O(log n)

Insert O(log n)

Decrease key O(log n)

Uses of heaps

 Sorting: insert all elements, then keep

removing minimum

 As a priority queue: keeping track of the

“highest priority” item to process next

Implementing a heap

 Represent heap as a complete binary tree, with

all children keys greater than their parent

 Note: no ordering among siblings/cousins

Find minimum

 Easy! Minimum is always at the top, just

return it in O(1)

Insert key

 Add new element to next position in

complete array

 Swap child with parent until the heap

ordering is fixed

 Takes O(levels of tree) = O(log N)

Decrease key

 Similar to insertion: swap child with parent

until heap is ordered

 O(log N)

Delete minimum

 Swap minimum with rightmost leaf and delete

 Bubble root down, promoting smaller child

 Again O(log N)

Building a heap from scratch

 We would approximate that inserting N

elements should take O(N log N) time

 But a more careful analysis shows that most

elements in a heap are near the bottom, so

they don’t take many swaps

 Can actually build heap in O(N) time

Actually implementing a heap

 Often store values in array, calculate links

Priority Queue example 1

 We have k sorted arrays of size n each

 Might have broken up a sorting task across

multiple machines in a datacenter

 Merge them into a single sorted array

 O (n*k log k)

Priority Queue example 2

 Given unsorted array, find the k minimum

elements

 Might want to get the 10 best scores from a

very large database

 Or k closest points to some position

 O(n + k log n)

File compression

 Say we are given some text data to store

 If there are 32 letters + punctuation

possibilities, we could represent each letter

as a 5-bit binary codeword (25 = 32)

 Better idea: Use shorter codewords for

frequent letters, longer codewords for

infrequent letters

Huffman encoding

 Count frequencies of each symbol

 Create tree merging least-frequent symbols

 Repeat until all symbols merged

 Path to a symbol is its codeword

 This is a prefix code – don’t need explicit

separators, since no codeword is prefix of

another

Implementing with min heap

 Create heap in O(N) time

 Remove two smallest elements and re-insert

sum of frequencies, until only one left

 O(N log N) in total

Heapsort

 Build heap, then remove minimum N times

 O(N log N), so asymptotically optimal

 https://www.cs.usfca.edu/~galles/visualizati

on/HeapSort.html

https://www.cs.usfca.edu/~galles/visualization/HeapSort.html
https://www.cs.usfca.edu/~galles/visualization/HeapSort.html

Assignment: Near-sorted data

 Given an array for size n that is mostly

sorted: each element is at most k places away

from its correct position

 How can we sort this array efficiently using a

heap?

 What is the Big-O time complexity in terms of

n and k?

