Advanced
Programming and
Algorithms

Dr. Baldassano

Yu’s Elite Education

About Me

» Went to college at Princeton

for Electrical Engineering

» PhD at Stanford

in Computer Science

» Now a research fellow at the

Princeton Neuroscience Institute

Goals of the class

» Learn about the most useful algorithms that power
modern computing

» Learn how to apply algorithms to solve new problems

» Learn how to develop and analyze new algorithms

Course website

» Go to www.chrisbaldassano.com, click on Teaching,
then “Advanced Programming and Algorithms”

» Has my email address <chrisb@princeton.edu>, schedule
and assignments

http://www.chrisbaldassano.com/

Programming languages

» Most of this class will just use “pseudocode” and talk
about algorithms at a conceptual level

» For homework assignments you can use any
programming language you’re familiar with

» | will be using Python for solutions and demos, but the
code should be understandable even if you don’t know
Python

What are algorithms and data
structures?

» Algorithm: A procedure for solving a problem

» We are especially interested in efficient algorithms, that
solve problems using as little time and/or resources as
possible

» Data structure: A way of organizing information

» If we know the types of operations we want to do on the
data, we can organize it in a way that makes these
operations fast and/or easy

Simple examples

» How to find where a particular term is defined in a book?
» Algorithm 1: Open to random pages to find the definition

» Valid algorithm, will work eventually!

» But very inefficient - could revisit pages multiple times

» Algorithm 2: Start from beginning, go one page at a time to
find definition

» Close to the best we can do for finding a single word

» Algorithm 3: Go through entire book, create an index of the
page number where every word occurs, then use this index
to find term

» Silly to do for one lookup, but this index makes all future
lookups very fast

Data structures

» All algorithms make use of data structures to keep track
of computations in an efficient way

» Different data structures make different types of
operations fast

» Example: lists of numbers

» Array - fast to read out number at any position, slow to
insert new number

» “Linked list” - fast to insert a new number, slow to read
out number at any position

» Often there is a tradeoff between memory and time

» If we never throw any information away then we won’t
have to recompute it, but it might take up lots of memory

Why study algorithms?

» All datasets are getting bigger and bigger:

» Internet - web search, packet routing...
Science - genetics, brain imaging, climate modeling...
Computers - circuit layout, file systems...

Computer graphics - movies, video games, virtual reality...

vV v v v

Security - cell phones, e-commerce, voting machines...

» Social networks - recommendations, news feeds...

» We need efficient algorithms to design almost any
modern computer system

Why study algorithms?

» To become a more proficient programmer:

» “l will, in fact, claim that the difference between a bad
programmer and a good one is whether he considers his
code or his data structures more important. Bad
programmers worry about the code. Good programmers
worry about data structures and their relationships.” —
Linus Torvalds (creator of Linux)

» Because they’re interesting:

» “For me, great algorithms are the poetry of computation.
Just like verse, they can be terse, allusive, dense, and
even mysterious. But once unlocked, they cast a brilliant
new light on some aspect of computing.” — Francis
Sullivan

Why study algorithms?

“People who analyze algorithms have double happiness. First of all
they experience the sheer beauty of elegant mathematical patterns
that surround elegant computational procedures. Then they
receive a practical payoff when their theories make it possible to
get other jobs done more quickly and more economically.”

— D. E. Knuth (1995)

Why study algorithms?

» To unlock the secrets of life and the universe:

» “Computer models mirroring real life have become crucial
for most advances made in chemistry today.... Today the
computer is just as important a tool for chemists as the
test tube.” — Royal Swedish Academy of Sciences

» To enable us to solve complex problems:
» https://www.youtube.com/watch?v=RGJL6GImwA4E

https://www.youtube.com/watch?v=RGJL6G9mw4E

History of Algorithms

“As soon as an Analytic Engine exists, it will necessarily guide the future course of the science.
Whenever any result is sought by its aid, the question will arise—By what course of
calculation can these results be arrived at by the machine in the shortest time?”

— Charles Babbage (1864)

Analytic Engine

how many times do you
have to turn the crank?

History of Algorithms

“It is convenient to have a measure of the amount of work involved in a computing
process, even though it be a very crude one. We may count up the number of times

that various elementary operations are applied in the whole process ...
— Alan Turing (1947)

ROUNDING-OFF ERRORS IN MATRIX PROCESSES
By A. M. TURING
(National Physical Laboratory, Teddington, Middlesex)
[Received 4 November 1947]
SUMMARY

A number of methods of solving sets of linear equations and inverting matrices
are discussed. The theory of the rounding-off errors involved is investigated for
some of the methods. In all cases examined, including the well-known ‘Gauss
elimination process’, it is found that the errors are normally quite moderate: no
exponential build-up need occur.

Algorithm examples

» Guessing game:
https://www.khanacademy.org/computing/computer-
science/algorithms/intro-to-algorithms/a/a-guessing-

game

» Route finding:
https://www.khanacademy.org/computing/computer-
science/algorithms/intro-to-algorithms/a/route-finding
https://qiao.github.io/PathFinding.js/visual/

» Generating app names:
http://mrsharpoblunto.github.io/foswig.js/

» Genetic algorithm:
http://rednuht.org/genetic_walkers/

https://www.khanacademy.org/computing/computer-science/algorithms/intro-to-algorithms/a/a-guessing-game
https://www.khanacademy.org/computing/computer-science/algorithms/intro-to-algorithms/a/route-finding
https://qiao.github.io/PathFinding.js/visual/
http://mrsharpoblunto.github.io/foswig.js/
http://rednuht.org/genetic_walkers/

What makes an algorithm
good?

» Want efficiency in time - produce an answer as quickly
as possible

» Want efficiency in memory - use as little RAM as
possible

» Want efficiency in implementation - the less complex
the better

» Want this to work on any dataset without hand-tuned
conditions

» Want algorithms that scale well with size of data

» If data gets 2x bigger, does algorithm require more than 2x
as much time/space?

Measuring how an algorithm
scales

» “Big-O notation”

O(log N) - algorithm scales logarithmically with dataset size

O(N) - algorithm scales linearly with dataset size (good)

O(N?) - algorithm scales quadratically with dataset size

vV v v v VvV

(
(
O(N * log N) - algorithm scales slightly worse that linearly
(
(

O(2N) - algorithm scales exponentially with dataset size

Measuring how an algorithm
scales

n nlog, n n? B
n=10 < 1 sec < 1 sec < 1 sec < 1 sec
n=30 < 1 sec < 1 sec < 1 sec 18 min
n=>50 < 1 sec < 1 sec < 1 sec 36 years
n =100 <lsec <lsec <1sec 107 years

n=1,000 < 1 sec < 1 sec 1 sec verylong
n = 10,000 < 1 sec < 1 sec 2 min very long
n = 100,000 < 1 sec 2sec 3 hours very long
n = 1,000,000 1 sec 20 sec 12 days very long

Table 2.1 The running times (rounded up) of different algorithms on inputs of
increasing size, for a processor performing a million high-level instructions per second.
In cases where the running time exceeds 10%° years, we simply record the algorithm as
taking a very long time.

Example: Binary Search

» Given a sorted list of numbers, find where a specific
number appears

1 5 10 12 14 19 20
» At every step we can eliminate half the numbers
1 5 10 241920

» So a list twice as big takes only one additional step!

» Running time is O(log N)

Example: Sum-3

» Given a list of numbers, are there three that sum to 0?
-0 5 -2 3 -9 -8 20

» Easy algorithm: try every possible combination of three
numbers

» Running time: O(N3)

» Can we do better?

Sum-3 Algorithm

» First sort numbers
-10 -9 -8 -2 3 5 20

» Assume we’ll use first number

» Try pairing with first and last remaining numbers
-10 9 -8 -2 3 5 20

» Move in from left and right, depending on whether sum
is above or below zero

-10 9 -8 -2 3 5 20

» If the green numbers hit each other, try again with
assuming that the second number is used

15 -9 ¢ -2 3 5 0

Sum-3 Algorithm

» In the worst case we’ll have to try all possible “first
choice” red numbers

» For each of these, we might have to look at every other
number

» Running time: O(N?)

» If there are 1000 numbers, this is 1000 times faster!

» One trick: we assumed sorting was fast! Turns out we
can sort faster than O(N?), so we can ignore this for now

Sieve of Eratosthenes

» http://www.algomation.com/algorithm/eratothanes-
sieve

http://www.algomation.com/algorithm/eratothanes-sieve

Warmup for next week’s
class: sorting

» Putting a list in order is a classic problem in computer
science

» Simplest algorithm: “Bubble” sort
» Compare every pair of adjacent elements
» If they are out of order, swap them

» Keep making passes over the list until it is sorted

Bubble sort

S{[1]112|[-2]]|16 unsorted
51112 5|15 5> 1, swap L] AR R
1[5 |[12] -5 |16 5< 12, ok S 12] 8
15 12|]-8] 18 12 > -5, swap IER IRt
oo 12| 1. 12 < 16, ok

S[11]]5][12][16
1{15](-5][12] |16 1< 5, ok
TS99 12|16 5> -5, swap
11155 |[12] |16 5 < 12, ok

Assignment

» Implement bubble sort in any language

» How long does it take to sort 1,000 humbers? What about
10,0007

» Email your code and answers to these two questions to me
at chrisb@princeton.edu

» Due before next class

» [FYI: Assignments are also posted at chrisbaldassano.com]

Re-scheduling December 10th
class

» | will be away on December 10th

» We can reschedule the class for December 7t (Mon), or
11t (Fri)

» Part of your assignment: Email me which of these days
you would be available

