
Advanced

Programming and

Algorithms
Dr. Baldassano

Yu’s Elite Education

About Me

 Went to college at Princeton

for Electrical Engineering

 PhD at Stanford

in Computer Science

 Now a research fellow at the

Princeton Neuroscience Institute

Goals of the class

 Learn about the most useful algorithms that power

modern computing

 Learn how to apply algorithms to solve new problems

 Learn how to develop and analyze new algorithms

Course website

 Go to www.chrisbaldassano.com, click on Teaching,

then “Advanced Programming and Algorithms”

 Has my email address <chrisb@princeton.edu>, schedule

and assignments

http://www.chrisbaldassano.com/

Programming languages

 Most of this class will just use “pseudocode” and talk

about algorithms at a conceptual level

 For homework assignments you can use any

programming language you’re familiar with

 I will be using Python for solutions and demos, but the

code should be understandable even if you don’t know

Python

What are algorithms and data

structures?

 Algorithm: A procedure for solving a problem

 We are especially interested in efficient algorithms, that

solve problems using as little time and/or resources as

possible

 Data structure: A way of organizing information

 If we know the types of operations we want to do on the

data, we can organize it in a way that makes these

operations fast and/or easy

Simple examples

 How to find where a particular term is defined in a book?

 Algorithm 1: Open to random pages to find the definition

 Valid algorithm, will work eventually!

 But very inefficient – could revisit pages multiple times

 Algorithm 2: Start from beginning, go one page at a time to
find definition

 Close to the best we can do for finding a single word

 Algorithm 3: Go through entire book, create an index of the
page number where every word occurs, then use this index
to find term

 Silly to do for one lookup, but this index makes all future
lookups very fast

Data structures

 All algorithms make use of data structures to keep track
of computations in an efficient way

 Different data structures make different types of
operations fast

 Example: lists of numbers

 Array – fast to read out number at any position, slow to
insert new number

 “Linked list” – fast to insert a new number, slow to read
out number at any position

 Often there is a tradeoff between memory and time

 If we never throw any information away then we won’t
have to recompute it, but it might take up lots of memory

Why study algorithms?

 All datasets are getting bigger and bigger:

 Internet – web search, packet routing…

 Science – genetics, brain imaging, climate modeling…

 Computers – circuit layout, file systems…

 Computer graphics – movies, video games, virtual reality…

 Security – cell phones, e-commerce, voting machines…

 Social networks – recommendations, news feeds…

 We need efficient algorithms to design almost any

modern computer system

Why study algorithms?

 To become a more proficient programmer:

 “I will, in fact, claim that the difference between a bad
programmer and a good one is whether he considers his
code or his data structures more important. Bad
programmers worry about the code. Good programmers
worry about data structures and their relationships.” —
Linus Torvalds (creator of Linux)

 Because they’re interesting:

 “For me, great algorithms are the poetry of computation.
Just like verse, they can be terse, allusive, dense, and
even mysterious. But once unlocked, they cast a brilliant
new light on some aspect of computing.” — Francis
Sullivan

Why study algorithms?

Why study algorithms?

 To unlock the secrets of life and the universe:

 “Computer models mirroring real life have become crucial

for most advances made in chemistry today…. Today the

computer is just as important a tool for chemists as the

test tube.” — Royal Swedish Academy of Sciences

 To enable us to solve complex problems:

 https://www.youtube.com/watch?v=RGJL6G9mw4E

https://www.youtube.com/watch?v=RGJL6G9mw4E

History of Algorithms

History of Algorithms

Algorithm examples

 Guessing game:

https://www.khanacademy.org/computing/computer-

science/algorithms/intro-to-algorithms/a/a-guessing-

game

 Route finding:

https://www.khanacademy.org/computing/computer-

science/algorithms/intro-to-algorithms/a/route-finding

https://qiao.github.io/PathFinding.js/visual/

 Generating app names:

http://mrsharpoblunto.github.io/foswig.js/

 Genetic algorithm:

http://rednuht.org/genetic_walkers/

https://www.khanacademy.org/computing/computer-science/algorithms/intro-to-algorithms/a/a-guessing-game
https://www.khanacademy.org/computing/computer-science/algorithms/intro-to-algorithms/a/route-finding
https://qiao.github.io/PathFinding.js/visual/
http://mrsharpoblunto.github.io/foswig.js/
http://rednuht.org/genetic_walkers/

What makes an algorithm

good?

 Want efficiency in time – produce an answer as quickly
as possible

 Want efficiency in memory – use as little RAM as
possible

 Want efficiency in implementation – the less complex
the better

 Want this to work on any dataset without hand-tuned
conditions

 Want algorithms that scale well with size of data

 If data gets 2x bigger, does algorithm require more than 2x
as much time/space?

Measuring how an algorithm

scales

 “Big-O notation”

 O(log N) – algorithm scales logarithmically with dataset size

 O(N) – algorithm scales linearly with dataset size (good)

 O(N * log N) – algorithm scales slightly worse that linearly

 O(N2) – algorithm scales quadratically with dataset size

 O(2N) – algorithm scales exponentially with dataset size

Measuring how an algorithm

scales

Example: Binary Search

 Given a sorted list of numbers, find where a specific

number appears

1 5 10 12 14 19 20

 At every step we can eliminate half the numbers

1 5 10 12 14 19 20

 So a list twice as big takes only one additional step!

 Running time is O(log N)

Example: Sum-3

 Given a list of numbers, are there three that sum to 0?

-10 5 -2 3 -9 -8 20

 Easy algorithm: try every possible combination of three

numbers

 Running time: O(N3)

 Can we do better?

Sum-3 Algorithm

 First sort numbers

-10 -9 -8 -2 3 5 20

 Assume we’ll use first number

 Try pairing with first and last remaining numbers

-10 -9 -8 -2 3 5 20

 Move in from left and right, depending on whether sum

is above or below zero

-10 -9 -8 -2 3 5 20

 If the green numbers hit each other, try again with

assuming that the second number is used

-10 -9 -8 -2 3 5 20

Sum-3 Algorithm

 In the worst case we’ll have to try all possible “first

choice” red numbers

 For each of these, we might have to look at every other

number

 Running time: O(N2)

 If there are 1000 numbers, this is 1000 times faster!

 One trick: we assumed sorting was fast! Turns out we

can sort faster than O(N2), so we can ignore this for now

Sieve of Eratosthenes

 http://www.algomation.com/algorithm/eratothanes-

sieve

http://www.algomation.com/algorithm/eratothanes-sieve

Warmup for next week’s

class: sorting

 Putting a list in order is a classic problem in computer

science

 Simplest algorithm: “Bubble” sort

 Compare every pair of adjacent elements

 If they are out of order, swap them

 Keep making passes over the list until it is sorted

Bubble sort

Assignment

 Implement bubble sort in any language

 How long does it take to sort 1,000 numbers? What about
10,000?

 Email your code and answers to these two questions to me
at chrisb@princeton.edu

 Due before next class

 [FYI: Assignments are also posted at chrisbaldassano.com]

Re-scheduling December 10th

class

 I will be away on December 10th

 We can reschedule the class for December 7th (Mon), or

11th (Fri)

 Part of your assignment: Email me which of these days

you would be available

