
Advanced

Programming and

Algorithms
Dr. Baldassano

Yu’s Elite Education

About Me

 Went to college at Princeton

for Electrical Engineering

 PhD at Stanford

in Computer Science

 Now a research fellow at the

Princeton Neuroscience Institute

Goals of the class

 Learn about the most useful algorithms that power

modern computing

 Learn how to apply algorithms to solve new problems

 Learn how to develop and analyze new algorithms

Course website

 Go to www.chrisbaldassano.com, click on Teaching,

then “Advanced Programming and Algorithms”

 Has my email address <chrisb@princeton.edu>, schedule

and assignments

http://www.chrisbaldassano.com/

Programming languages

 Most of this class will just use “pseudocode” and talk

about algorithms at a conceptual level

 For homework assignments you can use any

programming language you’re familiar with

 I will be using Python for solutions and demos, but the

code should be understandable even if you don’t know

Python

What are algorithms and data

structures?

 Algorithm: A procedure for solving a problem

 We are especially interested in efficient algorithms, that

solve problems using as little time and/or resources as

possible

 Data structure: A way of organizing information

 If we know the types of operations we want to do on the

data, we can organize it in a way that makes these

operations fast and/or easy

Simple examples

 How to find where a particular term is defined in a book?

 Algorithm 1: Open to random pages to find the definition

 Valid algorithm, will work eventually!

 But very inefficient – could revisit pages multiple times

 Algorithm 2: Start from beginning, go one page at a time to
find definition

 Close to the best we can do for finding a single word

 Algorithm 3: Go through entire book, create an index of the
page number where every word occurs, then use this index
to find term

 Silly to do for one lookup, but this index makes all future
lookups very fast

Data structures

 All algorithms make use of data structures to keep track
of computations in an efficient way

 Different data structures make different types of
operations fast

 Example: lists of numbers

 Array – fast to read out number at any position, slow to
insert new number

 “Linked list” – fast to insert a new number, slow to read
out number at any position

 Often there is a tradeoff between memory and time

 If we never throw any information away then we won’t
have to recompute it, but it might take up lots of memory

Why study algorithms?

 All datasets are getting bigger and bigger:

 Internet – web search, packet routing…

 Science – genetics, brain imaging, climate modeling…

 Computers – circuit layout, file systems…

 Computer graphics – movies, video games, virtual reality…

 Security – cell phones, e-commerce, voting machines…

 Social networks – recommendations, news feeds…

 We need efficient algorithms to design almost any

modern computer system

Why study algorithms?

 To become a more proficient programmer:

 “I will, in fact, claim that the difference between a bad
programmer and a good one is whether he considers his
code or his data structures more important. Bad
programmers worry about the code. Good programmers
worry about data structures and their relationships.” —
Linus Torvalds (creator of Linux)

 Because they’re interesting:

 “For me, great algorithms are the poetry of computation.
Just like verse, they can be terse, allusive, dense, and
even mysterious. But once unlocked, they cast a brilliant
new light on some aspect of computing.” — Francis
Sullivan

Why study algorithms?

Why study algorithms?

 To unlock the secrets of life and the universe:

 “Computer models mirroring real life have become crucial

for most advances made in chemistry today…. Today the

computer is just as important a tool for chemists as the

test tube.” — Royal Swedish Academy of Sciences

 To enable us to solve complex problems:

 https://www.youtube.com/watch?v=RGJL6G9mw4E

https://www.youtube.com/watch?v=RGJL6G9mw4E

History of Algorithms

History of Algorithms

Algorithm examples

 Guessing game:

https://www.khanacademy.org/computing/computer-

science/algorithms/intro-to-algorithms/a/a-guessing-

game

 Route finding:

https://www.khanacademy.org/computing/computer-

science/algorithms/intro-to-algorithms/a/route-finding

https://qiao.github.io/PathFinding.js/visual/

 Generating app names:

http://mrsharpoblunto.github.io/foswig.js/

 Genetic algorithm:

http://rednuht.org/genetic_walkers/

https://www.khanacademy.org/computing/computer-science/algorithms/intro-to-algorithms/a/a-guessing-game
https://www.khanacademy.org/computing/computer-science/algorithms/intro-to-algorithms/a/route-finding
https://qiao.github.io/PathFinding.js/visual/
http://mrsharpoblunto.github.io/foswig.js/
http://rednuht.org/genetic_walkers/

What makes an algorithm

good?

 Want efficiency in time – produce an answer as quickly
as possible

 Want efficiency in memory – use as little RAM as
possible

 Want efficiency in implementation – the less complex
the better

 Want this to work on any dataset without hand-tuned
conditions

 Want algorithms that scale well with size of data

 If data gets 2x bigger, does algorithm require more than 2x
as much time/space?

Measuring how an algorithm

scales

 “Big-O notation”

 O(log N) – algorithm scales logarithmically with dataset size

 O(N) – algorithm scales linearly with dataset size (good)

 O(N * log N) – algorithm scales slightly worse that linearly

 O(N2) – algorithm scales quadratically with dataset size

 O(2N) – algorithm scales exponentially with dataset size

Measuring how an algorithm

scales

Example: Binary Search

 Given a sorted list of numbers, find where a specific

number appears

1 5 10 12 14 19 20

 At every step we can eliminate half the numbers

1 5 10 12 14 19 20

 So a list twice as big takes only one additional step!

 Running time is O(log N)

Example: Sum-3

 Given a list of numbers, are there three that sum to 0?

-10 5 -2 3 -9 -8 20

 Easy algorithm: try every possible combination of three

numbers

 Running time: O(N3)

 Can we do better?

Sum-3 Algorithm

 First sort numbers

-10 -9 -8 -2 3 5 20

 Assume we’ll use first number

 Try pairing with first and last remaining numbers

-10 -9 -8 -2 3 5 20

 Move in from left and right, depending on whether sum

is above or below zero

-10 -9 -8 -2 3 5 20

 If the green numbers hit each other, try again with

assuming that the second number is used

-10 -9 -8 -2 3 5 20

Sum-3 Algorithm

 In the worst case we’ll have to try all possible “first

choice” red numbers

 For each of these, we might have to look at every other

number

 Running time: O(N2)

 If there are 1000 numbers, this is 1000 times faster!

 One trick: we assumed sorting was fast! Turns out we

can sort faster than O(N2), so we can ignore this for now

Sieve of Eratosthenes

 http://www.algomation.com/algorithm/eratothanes-

sieve

http://www.algomation.com/algorithm/eratothanes-sieve

Warmup for next week’s

class: sorting

 Putting a list in order is a classic problem in computer

science

 Simplest algorithm: “Bubble” sort

 Compare every pair of adjacent elements

 If they are out of order, swap them

 Keep making passes over the list until it is sorted

Bubble sort

Assignment

 Implement bubble sort in any language

 How long does it take to sort 1,000 numbers? What about
10,000?

 Email your code and answers to these two questions to me
at chrisb@princeton.edu

 Due before next class

 [FYI: Assignments are also posted at chrisbaldassano.com]

Re-scheduling December 10th

class

 I will be away on December 10th

 We can reschedule the class for December 7th (Mon), or

11th (Fri)

 Part of your assignment: Email me which of these days

you would be available

