
Linked Lists, Stacks, 

and Queues
Dr. Baldassano

chrisb@princeton.edu

Yu’s Elite Education



Last week recap

 Heaps

 Heap structure and ordering

 Adding elements

 Removing elements

 Using as priority queue

 Heapsort



Problems with arrays

 Traditional arrays/lists store data in 

consecutive slots in memory

 Good: can easily calculate where element i
can be found, as (begin + i*datasize)

 Bad: Inserting or deleting elements requires 

moving O(N) elements (unless at end)

 Python example



Linked lists

 Linked lists do not store elements 

consecutively in memory

 Each element contains some data, and the 

memory address of the next element

 http://visualgo.net/list.html

http://visualgo.net/list.html


Big-O for linked lists

 Inserting or deleting a node (assuming we 

know memory address of insertion/deletion 

point) is O(1) (vs. O(n) for array)

 Indexing (finding nth piece of data) is O(n) 

(vs. O(1) for array)



Implementing linked list

 Node structure

 Data field

 Pointer to next node (NULL if end of list)

 Head pointer to first node

 Example in python



Reversing linked list

 Can we reverse all links in a linked list in a 

single pass?



Detecting loops in a linked 

list

 How can we check that our list doesn’t have 

any loops?

 Traverse until end?

 Mark each node?

 Check node against entire list so far?

 Works, but O(N2)

 Floyd’s tortoise and hare

 http://visualgo.net/cyclefinding.html

http://visualgo.net/cyclefinding.html


Problems with one-

directional links

 We can only iterate through the list in one 

direction

 Even if given the memory address of a node 

to delete, we’d have to iterate through the 

list to find the previous node

 Solution: Doubly-linked lists



Doubly-linked lists

 Every node contains data, and pointers to 

both previous and next nodes

 Have head and tail pointers to the front and 

back of the list

 Example in python (for show and insert)



Circular doubly-linked lists

 We can get rid of some of the special cases at 

the ends of the list by connecting the head 

and tail nodes to each other

 Example in python (for show and insert)



Stacks and Queues

 Linked lists are often used to implement two 

other data structures: stacks and queues

 Both allow us to add or remove one element 

at a time

 Queues: First-in-first-out (FIFO)

 Stacks: First-in-last-out (FILO)



Queues

 Uses of queues?

 Website requests

 Simulations or game engines

 Expanding algorithms like Dijkstra's



Stacks

 Uses of stacks?

 Recursive algorithms like mergesort

 Backtracking algorithms like constraint 

satisfaction (e.g. Sudoku)

 Compiling and running programs



Implementing Queue with 

linked list

 Why implement with linked list?

 Enqueue operation:

 Add node at head

 Dequeue operation

 Remove and return node at tail

 http://visualgo.net/list.html

http://visualgo.net/list.html


Implementing Stack with 

linked list

 Why implement with linked list?

 Push operation:

 Add node at head

 Pop operation:

 Remove and return node at head

 http://visualgo.net/list.html

http://visualgo.net/list.html


Stack example:

Reverse Polish Notation

 Traditional math notation: requires knowing 

order of operations, using parentheses

7+(1+2)*5 = 22

 Reverse Polish notation avoids these issues by 

using a stack

7 1 2 + 5 * +

 Implement in python



Assignment: Median of sorted 

circularly linked list

 Sorted singly-linked circular list:

 Given a reference to some node, find median 

of the list

 Note: need to handle all-equal special case


