
Linked Lists, Stacks, 

and Queues
Dr. Baldassano

chrisb@princeton.edu

Yu’s Elite Education



Last week recap

 Heaps

 Heap structure and ordering

 Adding elements

 Removing elements

 Using as priority queue

 Heapsort



Problems with arrays

 Traditional arrays/lists store data in 

consecutive slots in memory

 Good: can easily calculate where element i
can be found, as (begin + i*datasize)

 Bad: Inserting or deleting elements requires 

moving O(N) elements (unless at end)

 Python example



Linked lists

 Linked lists do not store elements 

consecutively in memory

 Each element contains some data, and the 

memory address of the next element

 http://visualgo.net/list.html

http://visualgo.net/list.html


Big-O for linked lists

 Inserting or deleting a node (assuming we 

know memory address of insertion/deletion 

point) is O(1) (vs. O(n) for array)

 Indexing (finding nth piece of data) is O(n) 

(vs. O(1) for array)



Implementing linked list

 Node structure

 Data field

 Pointer to next node (NULL if end of list)

 Head pointer to first node

 Example in python



Reversing linked list

 Can we reverse all links in a linked list in a 

single pass?



Detecting loops in a linked 

list

 How can we check that our list doesn’t have 

any loops?

 Traverse until end?

 Mark each node?

 Check node against entire list so far?

 Works, but O(N2)

 Floyd’s tortoise and hare

 http://visualgo.net/cyclefinding.html

http://visualgo.net/cyclefinding.html


Problems with one-

directional links

 We can only iterate through the list in one 

direction

 Even if given the memory address of a node 

to delete, we’d have to iterate through the 

list to find the previous node

 Solution: Doubly-linked lists



Doubly-linked lists

 Every node contains data, and pointers to 

both previous and next nodes

 Have head and tail pointers to the front and 

back of the list

 Example in python (for show and insert)



Circular doubly-linked lists

 We can get rid of some of the special cases at 

the ends of the list by connecting the head 

and tail nodes to each other

 Example in python (for show and insert)



Stacks and Queues

 Linked lists are often used to implement two 

other data structures: stacks and queues

 Both allow us to add or remove one element 

at a time

 Queues: First-in-first-out (FIFO)

 Stacks: First-in-last-out (FILO)



Queues

 Uses of queues?

 Website requests

 Simulations or game engines

 Expanding algorithms like Dijkstra's



Stacks

 Uses of stacks?

 Recursive algorithms like mergesort

 Backtracking algorithms like constraint 

satisfaction (e.g. Sudoku)

 Compiling and running programs



Implementing Queue with 

linked list

 Why implement with linked list?

 Enqueue operation:

 Add node at head

 Dequeue operation

 Remove and return node at tail

 http://visualgo.net/list.html

http://visualgo.net/list.html


Implementing Stack with 

linked list

 Why implement with linked list?

 Push operation:

 Add node at head

 Pop operation:

 Remove and return node at head

 http://visualgo.net/list.html

http://visualgo.net/list.html


Stack example:

Reverse Polish Notation

 Traditional math notation: requires knowing 

order of operations, using parentheses

7+(1+2)*5 = 22

 Reverse Polish notation avoids these issues by 

using a stack

7 1 2 + 5 * +

 Implement in python



Assignment: Median of sorted 

circularly linked list

 Sorted singly-linked circular list:

 Given a reference to some node, find median 

of the list

 Note: need to handle all-equal special case


