
Procedural 

Generation
Dr. Baldassano

chrisb@princeton.edu

Yu’s Elite Education



Last class recap: Game 

Playing

 Game playing is “adversarial search” – we no 

longer aim for the best goal, but only the best 

goal our opponent will allow us to reach

 Basic algorithm: minimax

 Speed-ups:

 Exact: Alpha-beta pruning, equivalent states

 Approximate: Evaluation heuristics, 

approximate pruning



Homework: 2-move TTT 

 Modify Tic-Tac-Toe program such that each 

player takes two turns at a time

 How do we change the minimax procedure? 

Does the game still end in a draw?



Creative algorithms

 Most problems we’ve talked about have well-defined 

correct answers

 The challenge has been to find efficient and correct 

algorithms

 Today we’ll talk about the opposite: algorithms that 

give “creative” outputs, where the “right” answer is 

much more subjective



Procedural generation

 These algorithms define a set of rules (a procedure) for 

generating some kind of artistic output

 Called “procedural generation”



Maze generation

 Want to generate a simple maze – enter bottom left, 

exit top right, no loops

 Remember back to graph class – what would we call this 

kind of maze?

 Spanning tree!

 Some ideas:

 Use Prim’s with random edge weights

 Randomly add edges that don’t form loops

 Breadth-first (choose among all edges)

 Depth-first (keep branching from same edge for as long as 

possible)

 http://bost.ocks.org/mike/algorithms/#maze-

generation

http://bost.ocks.org/mike/algorithms/#maze-generation


Generating sequences

 Often we want to generate a sequence of outputs, 

where each output depends on previous ones

 For example, say we want an algorithm to write a story 

- it will need to pick a sequence of words, where each 

word is related to previous words

 Simplest model: each word is chosen probabilistically 

based on the previous word



Markov chain

 A sequence where each output depends just on the 

previous output is called a Markov chain

 For text, we look at the last word we output, and then 

randomly pick the next word based on how common 

that two-word combination is

 Example: current sentence is "I went to the"

 Next word we pick is more likely to be "park" than "for", 

since "the park" is a common combination while "the for" is 

not



Coding a Markov chain

 We need to set the probability of every two-word 

English phrase - how can we set all these parameters??

 Machine learning to the rescue!

 Take a massive amount of text, and just count up how 

many times we see each two-word phrase



Simulating nature

 For video games and art, we often want to simulate 

things that exist in nature, like plants or organisms

 We want to capture their "organic" structure, but be 

able to generate an infinite number of examples



Drawing Trees

 Let's start with a 2D tree - what would be a procedure 

for generating a branching tree?

 One approach:

 Start with several circles, each of which has a 

direction of travel

 Draw circles in their direction of travel, plus some 

noise

 Randomly decide to create copy of a circle with a 

perpendicular direction of travel

 http://inconvergent.net/generative/hyphae/

http://inconvergent.net/generative/hyphae/


L-systems

 Many procedural systems can be described 

as Lindenmayer systems (L-systems)

 Start with some base state, called an "axiom"

 Keep applying some "production rules" that transform 

the state in some way

 Define how to draw a state



Example L-system

 Axiom: F

 Production rule: F -> F+F--F+F

 Drawing: F is line segment, + rotates CW, - rotate CCW

 States:

 F

 F+F--F+F

 F+F--F+F+F+F--F+F--F+F--F+F+F+F--F+F



Example L-system



More L-systems

 http://mathforum.org/advanced/robertd/lsys2d.html

 http://www.allenpike.com/modeling-plants-with-l-

systems/

 http://josauder.github.io/procedural_city_generation/

 Let’s try!

http://mathforum.org/advanced/robertd/lsys2d.html
http://www.allenpike.com/modeling-plants-with-l-systems/
http://josauder.github.io/procedural_city_generation/


Homework: Higher-order 

Markov chains

 In a 2nd-order Markov chain, the next state depends on 

the previous two states (same for 3rd, 4th,…)

 Try different order chains at 

http://projects.haykranen.nl/markov/demo for the 

Alice in Wonderland input text

 What happens for low vs high orders?

 (Note that this Markov chain generates each letter, not 

each word)

http://projects.haykranen.nl/markov/demo

