
Procedural 

Generation
Dr. Baldassano

chrisb@princeton.edu

Yu’s Elite Education



Last class recap: Game 

Playing

 Game playing is “adversarial search” – we no 

longer aim for the best goal, but only the best 

goal our opponent will allow us to reach

 Basic algorithm: minimax

 Speed-ups:

 Exact: Alpha-beta pruning, equivalent states

 Approximate: Evaluation heuristics, 

approximate pruning



Homework: 2-move TTT 

 Modify Tic-Tac-Toe program such that each 

player takes two turns at a time

 How do we change the minimax procedure? 

Does the game still end in a draw?



Creative algorithms

 Most problems we’ve talked about have well-defined 

correct answers

 The challenge has been to find efficient and correct 

algorithms

 Today we’ll talk about the opposite: algorithms that 

give “creative” outputs, where the “right” answer is 

much more subjective



Procedural generation

 These algorithms define a set of rules (a procedure) for 

generating some kind of artistic output

 Called “procedural generation”



Maze generation

 Want to generate a simple maze – enter bottom left, 

exit top right, no loops

 Remember back to graph class – what would we call this 

kind of maze?

 Spanning tree!

 Some ideas:

 Use Prim’s with random edge weights

 Randomly add edges that don’t form loops

 Breadth-first (choose among all edges)

 Depth-first (keep branching from same edge for as long as 

possible)

 http://bost.ocks.org/mike/algorithms/#maze-

generation

http://bost.ocks.org/mike/algorithms/#maze-generation


Generating sequences

 Often we want to generate a sequence of outputs, 

where each output depends on previous ones

 For example, say we want an algorithm to write a story 

- it will need to pick a sequence of words, where each 

word is related to previous words

 Simplest model: each word is chosen probabilistically 

based on the previous word



Markov chain

 A sequence where each output depends just on the 

previous output is called a Markov chain

 For text, we look at the last word we output, and then 

randomly pick the next word based on how common 

that two-word combination is

 Example: current sentence is "I went to the"

 Next word we pick is more likely to be "park" than "for", 

since "the park" is a common combination while "the for" is 

not



Coding a Markov chain

 We need to set the probability of every two-word 

English phrase - how can we set all these parameters??

 Machine learning to the rescue!

 Take a massive amount of text, and just count up how 

many times we see each two-word phrase



Simulating nature

 For video games and art, we often want to simulate 

things that exist in nature, like plants or organisms

 We want to capture their "organic" structure, but be 

able to generate an infinite number of examples



Drawing Trees

 Let's start with a 2D tree - what would be a procedure 

for generating a branching tree?

 One approach:

 Start with several circles, each of which has a 

direction of travel

 Draw circles in their direction of travel, plus some 

noise

 Randomly decide to create copy of a circle with a 

perpendicular direction of travel

 http://inconvergent.net/generative/hyphae/

http://inconvergent.net/generative/hyphae/


L-systems

 Many procedural systems can be described 

as Lindenmayer systems (L-systems)

 Start with some base state, called an "axiom"

 Keep applying some "production rules" that transform 

the state in some way

 Define how to draw a state



Example L-system

 Axiom: F

 Production rule: F -> F+F--F+F

 Drawing: F is line segment, + rotates CW, - rotate CCW

 States:

 F

 F+F--F+F

 F+F--F+F+F+F--F+F--F+F--F+F+F+F--F+F



Example L-system



More L-systems

 http://mathforum.org/advanced/robertd/lsys2d.html

 http://www.allenpike.com/modeling-plants-with-l-

systems/

 http://josauder.github.io/procedural_city_generation/

 Let’s try!

http://mathforum.org/advanced/robertd/lsys2d.html
http://www.allenpike.com/modeling-plants-with-l-systems/
http://josauder.github.io/procedural_city_generation/


Homework: Higher-order 

Markov chains

 In a 2nd-order Markov chain, the next state depends on 

the previous two states (same for 3rd, 4th,…)

 Try different order chains at 

http://projects.haykranen.nl/markov/demo for the 

Alice in Wonderland input text

 What happens for low vs high orders?

 (Note that this Markov chain generates each letter, not 

each word)

http://projects.haykranen.nl/markov/demo

