
Programming in

the Real World
Dr. Baldassano

chrisb@princeton.edu

Yu’s Elite Education

Our programs are getting

bigger!

 Our game was already over 100 lines long -

most programs are worked on by teams of

people for months or years

 What kinds of problems start appearing in big

programs?

#1: Communicating with code

 Programs are instructions for a computer, but also need to be

understandable to humans

 Other people working on your program

 Yourself in the future, after some time has passed

 Coding in a way that is easy for humans to work with is called

“good programming style”

Importance of style

 What does this code do?

def DoTheThing(input)

looper = sys.getsizeof(input) - \

sys.getsizeof('')

i = 0

while i < looper:

print(chr(ord(word[0]) - \

32*(ord(word[0]) > 96)))

Importance of style

 What does this code do?

def PrintUppercase(word)

for i in range(len(word)):

print(word[i].upper())

Importance of Style

 Sun Microsystems (creators of Java) pushed for coding

style because:

 80% of the lifetime cost of a piece of software goes

to maintenance.

 Hardly any software is maintained for its whole life

by the original author.

 Code conventions improve the readability of the

software, allowing engineers to understand new

code more quickly and thoroughly.

Basics of good style

 Use comments to explain complicated code

 Give variables useful names

 Break up the program into classes and functions

 Simple code is better than clever and fast code in

many cases

 No “magic numbers” – don’t use hard-coded numbers

without giving them a name

 Be consistent with tabs/spacing and variable naming

(capitalization, using underscores _, etc.)

Programming Style

 All of these sum up 3 random numbers. Which of these

has the best style?

c)

randSum = 0

for i in range(3):

randSum += random.randint(0,10)

b)

variable = random.randint(0,10) + \

random.randint(0,10) + \

random.randint(0,10)

a)

firstOne = random.randint(0,10)

For i in range(4/2):

firstOne = firstOne + random.randint(0,10)

Be a polite coder!

 Whenever you’re writing code that you expect will be used for

more than a few days, pay attention to programming style!

 Lots of online resources, like

https://google.github.io/styleguide/pyguide.html

“Always code as if the person who ends up maintaining your code

is a violent psychopath who knows where you live.”

https://google.github.io/styleguide/pyguide.html

#2: Debugging programs

 “Bugs” are errors in programs

 Very first “bug” was found by Grace Hopper’s research

group in 1947

Two types of bugs

 Syntax bugs

 These crash the program because of an invalid

command

 Usually the error tells us what we did wrong

 Runtime bugs

 The program runs, but gives the wrong answer!

 How can we fix these?

 What if the program is really big?

Debugging

 A “debugger” lets us run a program step-by-step

to figure out where the error is

 It shows you the values of all variables, and

sometimes will even let you try out changes

without restarting the program

IDLE Debugger

 IDLE comes with a very basic debugger, under

Debug->Debugger

 “Step” steps to next line (and goes into functions)

 “Over” steps to next line (but skips function calls)

 Can set breakpoints to quickly run to the part of the

program causing trouble

#3: Testing Programs

 How can we make sure our program is working

correctly?

 Can we ever be positive?

 How sure should we be, if:

 We’re writing a game for fun?

 We’re writing a game to sell?

 We’re writing business software that makes paychecks?

 We’re writing software to control pacemakers?

 We’re designing a firewall for nuclear codes?

Famous Bugs: Therac-25

 Therac-25 was a radiation therapy machine in 1985

 At least six people were given massive radiation

overdoses due to a software bug

Famous Bugs: Ariane 5

 In 1996, the European Space Agency’s prototype Ariane 5

rocket (costing $1 billion) blew up after launching, due

to a type error bug

Famous Bugs: Mars Climate

Orbiter

 In 1999, a NASA probe to Mars burned up in Martian

atmosphere, due to a bug in unit conversion between two

of its subsystems

Famous Bugs: 2003 Blackout

 In 2003, the Northeast US and Canada had an electrical

grid blackout for 7 hours, due to a bug in the alarm

system of an Ohio power plant

Bugs are everywhere

 More famous bugs:

https://en.wikipedia.org/wiki/List_of_software_bugs

 US NIST estimates that software bugs cost the US about

$59 billion every year

 Our best defense against bugs: testing!

https://en.wikipedia.org/wiki/List_of_software_bugs

Automated testing

 If we care about our program being correct, we need to

write another program, to test our program

 This test program will run our code with lots of inputs

for which we know the right answer, and make sure that

everything matches up

 Sometimes you work with a team to write the tests

first, so that everyone agrees on exactly what the

program should do before you write it

Running tests

 Let’s say my testing program runs 10 tests

 The first 9 pass, but the last one fails

 I figure out the mistake and think I’ve fixed it

 Which tests should I re-run?

 Regression testing: Always re-run all tests, to make sure

our fix didn’t break something else!

Testing example

 What would be good test cases for:

 A program that calculates the day of the week for a

given date?

Testing example

 What would be good test cases for:

 A website where people can buy products?

Testing example

 What would be good test cases for:

 A program that shuffles a deck of cards?

Tests in big programs

 How can we write tests for big programs, like a big

video game (League of Legends)?

 Testing the whole thing at once is good, but we also

need to test each piece of the program individually

 Unit tests are small tests that only test one particular

part of a program (like one function)

 Why are these useful?

#4: Keeping track of code

 Two related problems when working on a

programming project:

 How can we coordinate between multiple

people working on the same program?

 How can we keep track of the changes we’re

making, in case we break something and need

to undo changes?

Version Control

 Version Control systems are a way to keep a master

copy of our program

 Keep track of edits over time, so we can always roll back

to a previous version

 Allows multiple people to merge together their work into a

single master copy

 Originally designed for code, but these can be used for

other things too, like websites or even just text

documents!

Version Control Systems

 Most popular version control system today is called “git”

 Free services like GitHub and BitBucket can back up

your master copy, and let others view your code or even

propose changes!

 For any project you’ll be working on for more than a

few weeks and/or with other people, definitely think

about using version control

 Git has a great tutorial online at

https://try.github.io/levels/1/challenges/1

https://try.github.io/levels/1/challenges/1

#5: Software for writing

programs

 This seems like a lot to deal with – keeping track of

programming style, debuggers, testing, version control…

 Most programmers use an “Integrated Development

Environment” (IDE) that lets them write code and do all

of these other important things within a single piece of

software

 We’ve been using IDLE, which is a very basic IDE

 Some IDE features we’ve been using: syntax highlighting,

function hints, automatic indenting…

#5: Python IDEs: PyCharm

#5: Python IDEs: Spyder

#5: Python IDEs: Komodo

IDE Features

 Code completion – will try to autocomplete variable

and function names

 Syntax highlighting – will colorize text to make syntax

more clear, and flag lines with syntax errors

 Code style suggestions – will flag lines that may not be

formatted clearly (though a lot is still up to you)

 Integrated debugging – unlike IDLE, you can step

through your code right in the same window

 Unit testing – can define tests for individual classes,

and have them run automatically

 Version control – can show you whether each file is up-

to-date or how it differs from the master version

Summary

 For building real programs, we need to think about

some new issues:

 Coding style

 Debugging

 Testing

 Version control

 IDEs

 All of these things have to be learned through practice,

and every programmer develops their own set of tools

that they like to use

Homework: Debugging a

program

 Download the palindrome_buggy.py file from the

website

 The program is supposed to check if a string is a

palindrome (same forwards and backwards) but has bugs

and is failing its tests

 Use the IDLE debugger to help find the bugs so that it

passes all tests

