
Programming in

the Real World
Dr. Baldassano

chrisb@princeton.edu

Yu’s Elite Education

Our programs are getting

bigger!

 Our game was already over 100 lines long -

most programs are worked on by teams of

people for months or years

 What kinds of problems start appearing in big

programs?

#1: Communicating with code

 Programs are instructions for a computer, but also need to be

understandable to humans

 Other people working on your program

 Yourself in the future, after some time has passed

 Coding in a way that is easy for humans to work with is called

“good programming style”

Importance of style

 What does this code do?

def DoTheThing(input)

looper = sys.getsizeof(input) - \

sys.getsizeof('')

i = 0

while i < looper:

print(chr(ord(word[0]) - \

32*(ord(word[0]) > 96)))

Importance of style

 What does this code do?

def PrintUppercase(word)

for i in range(len(word)):

print(word[i].upper())

Importance of Style

 Sun Microsystems (creators of Java) pushed for coding

style because:

 80% of the lifetime cost of a piece of software goes

to maintenance.

 Hardly any software is maintained for its whole life

by the original author.

 Code conventions improve the readability of the

software, allowing engineers to understand new

code more quickly and thoroughly.

Basics of good style

 Use comments to explain complicated code

 Give variables useful names

 Break up the program into classes and functions

 Simple code is better than clever and fast code in

many cases

 No “magic numbers” – don’t use hard-coded numbers

without giving them a name

 Be consistent with tabs/spacing and variable naming

(capitalization, using underscores _, etc.)

Programming Style

 All of these sum up 3 random numbers. Which of these

has the best style?

c)

randSum = 0

for i in range(3):

randSum += random.randint(0,10)

b)

variable = random.randint(0,10) + \

random.randint(0,10) + \

random.randint(0,10)

a)

firstOne = random.randint(0,10)

For i in range(4/2):

firstOne = firstOne + random.randint(0,10)

Be a polite coder!

 Whenever you’re writing code that you expect will be used for

more than a few days, pay attention to programming style!

 Lots of online resources, like

https://google.github.io/styleguide/pyguide.html

“Always code as if the person who ends up maintaining your code

is a violent psychopath who knows where you live.”

https://google.github.io/styleguide/pyguide.html

#2: Debugging programs

 “Bugs” are errors in programs

 Very first “bug” was found by Grace Hopper’s research

group in 1947

Two types of bugs

 Syntax bugs

 These crash the program because of an invalid

command

 Usually the error tells us what we did wrong

 Runtime bugs

 The program runs, but gives the wrong answer!

 How can we fix these?

 What if the program is really big?

Debugging

 A “debugger” lets us run a program step-by-step

to figure out where the error is

 It shows you the values of all variables, and

sometimes will even let you try out changes

without restarting the program

IDLE Debugger

 IDLE comes with a very basic debugger, under

Debug->Debugger

 “Step” steps to next line (and goes into functions)

 “Over” steps to next line (but skips function calls)

 Can set breakpoints to quickly run to the part of the

program causing trouble

#3: Testing Programs

 How can we make sure our program is working

correctly?

 Can we ever be positive?

 How sure should we be, if:

 We’re writing a game for fun?

 We’re writing a game to sell?

 We’re writing business software that makes paychecks?

 We’re writing software to control pacemakers?

 We’re designing a firewall for nuclear codes?

Famous Bugs: Therac-25

 Therac-25 was a radiation therapy machine in 1985

 At least six people were given massive radiation

overdoses due to a software bug

Famous Bugs: Ariane 5

 In 1996, the European Space Agency’s prototype Ariane 5

rocket (costing $1 billion) blew up after launching, due

to a type error bug

Famous Bugs: Mars Climate

Orbiter

 In 1999, a NASA probe to Mars burned up in Martian

atmosphere, due to a bug in unit conversion between two

of its subsystems

Famous Bugs: 2003 Blackout

 In 2003, the Northeast US and Canada had an electrical

grid blackout for 7 hours, due to a bug in the alarm

system of an Ohio power plant

Bugs are everywhere

 More famous bugs:

https://en.wikipedia.org/wiki/List_of_software_bugs

 US NIST estimates that software bugs cost the US about

$59 billion every year

 Our best defense against bugs: testing!

https://en.wikipedia.org/wiki/List_of_software_bugs

Automated testing

 If we care about our program being correct, we need to

write another program, to test our program

 This test program will run our code with lots of inputs

for which we know the right answer, and make sure that

everything matches up

 Sometimes you work with a team to write the tests

first, so that everyone agrees on exactly what the

program should do before you write it

Running tests

 Let’s say my testing program runs 10 tests

 The first 9 pass, but the last one fails

 I figure out the mistake and think I’ve fixed it

 Which tests should I re-run?

 Regression testing: Always re-run all tests, to make sure

our fix didn’t break something else!

Testing example

 What would be good test cases for:

 A program that calculates the day of the week for a

given date?

Testing example

 What would be good test cases for:

 A website where people can buy products?

Testing example

 What would be good test cases for:

 A program that shuffles a deck of cards?

Tests in big programs

 How can we write tests for big programs, like a big

video game (League of Legends)?

 Testing the whole thing at once is good, but we also

need to test each piece of the program individually

 Unit tests are small tests that only test one particular

part of a program (like one function)

 Why are these useful?

#4: Keeping track of code

 Two related problems when working on a

programming project:

 How can we coordinate between multiple

people working on the same program?

 How can we keep track of the changes we’re

making, in case we break something and need

to undo changes?

Version Control

 Version Control systems are a way to keep a master

copy of our program

 Keep track of edits over time, so we can always roll back

to a previous version

 Allows multiple people to merge together their work into a

single master copy

 Originally designed for code, but these can be used for

other things too, like websites or even just text

documents!

Version Control Systems

 Most popular version control system today is called “git”

 Free services like GitHub and BitBucket can back up

your master copy, and let others view your code or even

propose changes!

 For any project you’ll be working on for more than a

few weeks and/or with other people, definitely think

about using version control

 Git has a great tutorial online at

https://try.github.io/levels/1/challenges/1

https://try.github.io/levels/1/challenges/1

#5: Software for writing

programs

 This seems like a lot to deal with – keeping track of

programming style, debuggers, testing, version control…

 Most programmers use an “Integrated Development

Environment” (IDE) that lets them write code and do all

of these other important things within a single piece of

software

 We’ve been using IDLE, which is a very basic IDE

 Some IDE features we’ve been using: syntax highlighting,

function hints, automatic indenting…

#5: Python IDEs: PyCharm

#5: Python IDEs: Spyder

#5: Python IDEs: Komodo

IDE Features

 Code completion – will try to autocomplete variable

and function names

 Syntax highlighting – will colorize text to make syntax

more clear, and flag lines with syntax errors

 Code style suggestions – will flag lines that may not be

formatted clearly (though a lot is still up to you)

 Integrated debugging – unlike IDLE, you can step

through your code right in the same window

 Unit testing – can define tests for individual classes,

and have them run automatically

 Version control – can show you whether each file is up-

to-date or how it differs from the master version

Summary

 For building real programs, we need to think about

some new issues:

 Coding style

 Debugging

 Testing

 Version control

 IDEs

 All of these things have to be learned through practice,

and every programmer develops their own set of tools

that they like to use

Homework: Debugging a

program

 Download the palindrome_buggy.py file from the

website

 The program is supposed to check if a string is a

palindrome (same forwards and backwards) but has bugs

and is failing its tests

 Use the IDLE debugger to help find the bugs so that it

passes all tests

