Programming 1n
the Real World

Dr. Baldassano

chrisb@princeton.edu

Yu’s Elite Education

Our programs are getting
bigger!

» Our game was already over 100 lines long -
most programs are worked on by teams of
people for months or years

» What kinds of problems start appearing in big
programs?

#1. Communicating with code

» Programs are instructions for a computer, but also need to be
understandable to humans

» Other people working on your program
» Yourself in the future, after some time has passed

» Coding in a way that is easy for humans to work with is called
“good programming style”

Importance of style

» What does this code do?

def DoTheThing (input)
looper = sys.getsizeof (input) - \
sys.getsizeof ('")
i =20
while 1 < looper:
print (chr (ord (word[0]) - \
32* (ord (word[0]) > 96)))

Importance of style

» What does this code do?

def PrintUppercase (word)
for 1 in range(len (word)) :

print (word[1i] .upper ())

Importance of Style

» Sun Microsystems (creators of Java) pushed for coding
style because:

» 80% of the lifetime cost of a piece of software goes
to maintenance.

» Hardly any software is maintained for its whole life
by the original author.

» Code conventions improve the readability of the
software, allowing engineers to understand new
code more quickly and thoroughly.

Basics of good style

Use comments to explain complicated code

Give variables useful names

Break up the program into classes and functions

vV v v Vv

Simple code is better than clever and fast code in
many cases

» No “magic humbers” - don’t use hard-coded numbers
without giving them a name

» Be consistent with tabs/spacing and variable naming
(capitalization, using underscores _, etc.)

Programming Style

» All of these sum up 3 random numbers. Which of these
has the best style?

a)
firstOne = random.randint (0,10)
For i in range(4/2):
firstOne = firstOne + random.randint (0,10)
D)
variable = random.randint (0,10) + \

random.randint (0,10) + \
random.randint (0, 10)

C)
randSum = O
for i in range(3):
randSum += random.randint (0, 10)

Be a polite coder!

» Whenever you’re writing code that you expect will be used fo
more than a few days, pay attention to programming style!

» Lots of online resources, like
https://google.github.io/styleguide/pyguide.html

“Always code as if the person who ends up maintaining your code
is a violent psychopath who knows where you live.”

https://google.github.io/styleguide/pyguide.html

#2: Debugging programs

» “Bugs” are errors in programs

» Very first “bug” was found by Grace Hopper’s research
group in 1947

T b

94 | Lo
0w Oml-o-“ shantol {/17.0 9.032 937 015
/000 “ sﬂr} = onhom / 9.087 §YC 99 <ok
130, (032 HMP ~me m/réﬂ 746/5 ?zjasi(g
03y PRO. > 2. 130yq0YS
Covek 2 lsob7éy/x s
R Ios st S M‘T‘ ‘?“'JW ’

im Gbony R

3 oo
1792 .>T¢I'+"—J Costhe 1 Ia (Slhe -:J\eck)
1§25 o 1e~) “\u '1"'\' Aa\ S TE&* L

- Relow*90 ?qr\o__‘ F '

\mdﬁb in rQ\qv\

TeF /50 Q;F;\(_S.thcfga c.qs% °'{ 5“1 Leln.‘ {ouni

Two types of bugs

» Syntax bugs

» These crash the program because of an invalid
command

» Usually the error tells us what we did wrong
» Runtime bugs

» The program runs, but gives the wrong answer!

» How can we fix these?

» What if the program is really big?

Debugging

» A “debugger” lets us run a program step-by-step
to figure out where the error is

» It shows you the values of all variables, and
sometimes will even let you try out changes
without restarting the program

IDLE Debugger

» IDLE comes with a very basic debugger, under
Debug->Debugger

» “Step” steps to next line (and goes into functions)
» “Over” steps to next line (but skips function calls)

» Can set breakpoints to quickly run to the part of the
program causing trouble

#3: Testing Programs

» How can we make sure our program is working
correctly?

» Can we ever be positive?

» How sure should we be, if:
» We’re writing a game for fun?
» We’re writing a game to sell?
» We’re writing business software that makes paychecks?
» We’re writing software to control pacemakers?

» We’re designing a firewall for nuclear codes?

Famous Bugs: Therac-25

» Therac-25 was a radiation therapy machine in 1985

Therao28 Unit

Room N intercom
emergency
switch

Turntable
position
monitor

Control
console

Room
emergency
switches

Motion enable Beam onfoff light
switch (footswitch)

interlock
switch

Display
terminal

Figure 1. Typical Therac-25 facility

» At least six people were given massive radiation
overdoses due to a software bug

Famous Bugs: Ariane 5

» In 1996, the European Space Agency’s prototype Ariane 5
rocket (costing $1 billion) blew up after launching, due
to a type error bug

Famous Bugs: Mars Climate
Orbiter

» In 1999, a NASA probe to Mars burned up in Martian
atmosphere, due to a bug in unit conversion between two
of its subsystems

In 2003, the Northeast US and Canada had an electrical
grid blackout for 7 hours, due to a bug in the alarm
system of an Ohio power plant

Bugs are everywhere

» More famous bugs:
https://en.wikipedia.org/wiki/List of software bugs

» US NIST estimates that software bugs cost the US about
$59 billion every year

» Our best defense against bugs: testing!

https://en.wikipedia.org/wiki/List_of_software_bugs

Automated testing

» If we care about our program being correct, we need to
write another program, to test our program

» This test program will run our code with lots of inputs
for which we know the right answer, and make sure that
everything matches up

» Sometimes you work with a team to write the tests
first, so that everyone agrees on exactly what the
program should do before you write it

Running tests

Let’s say my testing program runs 10 tests
The first 9 pass, but the last one fails
| figure out the mistake and think I’ve fixed it

Which tests should | re-run?

vV v v Vv

» Regression testing: Always re-run all tests, to make sure
our fix didn’t break something else!

Testing example

» What would be good test cases for:

» Aprogram that calculates the day of the week for a
given date?

Testing example

» What would be good test cases for:

» A website where people can buy products?

Testing example

» What would be good test cases for:

» A program that shuffles a deck of cards?

Tests in big programs

» How can we write tests for big programs, like a big
video game (League of Legends)?

» Testing the whole thing at once is good, but we also
need to test each piece of the program individually

» Unit tests are small tests that only test one particular
part of a program (like one function)

» Why are these useful?

#4:. Keeping track of code

» Two related problems when working on a
programming project:

» How can we coordinate between multiple
people working on the same program?

» How can we keep track of the changes we’re
making, in case we break something and need
to undo changes?

Version Control

» Version Control systems are a way to keep a master
copy of our program

» Keep track of edits over time, so we can always roll back
to a previous version

» Allows multiple people to merge together their work into a
single master copy

» Originally designed for code, but these can be used for
other things too, like websites or even just text
documents!

Version Control Systems

» Most popular version control system today is called “git”

» Free services like GitHub and BitBucket can back up

your master copy, and let others view your code or even
propose changes!

» For any project you’ll be working on for more than a
few weeks and/or with other people, definitely think
about using version control

» Git has a great tutorial online at
https://try.github.io/levels/1/challenges/1

https://try.github.io/levels/1/challenges/1

#5: Software for writing
programs

» This seems like a lot to deal with - keeping track of
programming style, debuggers, testing, version control...

» Most programmers use an “Integrated Development
Environment” (IDE) that lets them write code and do all
of these other important things within a single piece of
software

» We’ve been using IDLE, which is a very basic IDE

» Some IDE features we’ve been using: syntax highlighting,
function hints, automatic indenting...

#5: Python IDEs: PyCharm

3
/o)

Eldjango> Elcore> Bsigning.py> P & B s

08' tors.py % ﬁsigning.py X ﬁ.auth/views.py b3 | ﬁ.exceptions.py X | ﬁ. urlresolvers.py X | ~=3 05

£ &) raise BadSignature('Signature "%s" does not match' % sig) O g

i ; “1&
class TimestampSigner(Signer):

3| © def timestamp(self):

3 { return baseconv.base62.encode(int(time.time()))

A

el g def sign(self, value):

e = force_str(value)

= =
% Changes e = str('%s%s%s') % (value, self.sep, self.timestamp())

© TODO rn super(TimestampSigner, self).sign(value)

" Event Log gn(self, value, max_age=None):

£ Inspection

ieve original value and check it wasn't signed more
"

% Python Console

C:E Version Control

ngo jetbrains$ 1s

Terminal contrib forms template views
& Project core http templatetags

db middleware test

dispatch shortcuts.py utils
7 Structure ngo jetbrains$

¥r Favorites) Event Log

6:TODO ‘2 Version Control & 9: Changes

% Python Console

#5: Python IDEs: Spyder

‘E- Search Source Run‘ Tools Wiew 7
BEAAHG [k 0o ® i W

Editor - C:\Documents and SettingsicarlosiMis documentosiPythonimontecarlo_pi.py = X| |Object inspector
=2 [| A Interpalation.py [A mantecarla_pi.py [] [4F Source |C

s £ 3¢ ¥5

Object | nUMmpYy. mean

. Options,

w2 S Y -
i & . ElnErY -E),” nen N — mean(a, axis=None, dtype=None, out=None} o
2# -*- coding: utf-8 -*- Function of numpy . core, fromnumeric module

"""simple generation of pi via MonteCarlo integration. =
4 Taken from the Py4Science Workbook. Compute the arithmetic mean along the specified axis,
: import math = Returns the average of the array elements, The average is taken over the

. flattened array by default, otherwise over the specified axis, floatad
7 import random intermediate and return values are used for integer inputs,
& 8 import numpy as np

9 from scipy import weave

1@ L Parameters
11 def vi{n = 10000@): 1
12 " Aipproximate pi via monte carlo integration™”” a:array_like
13 rand = random.random Array containing numbers whose mean is desired, If ais not an
14 sqrt = math.sqrt oAy, a conversion is attempted,
15 m o= 0.0 adis :int, qptlonal _ _
P Axis along which the means are computed, The default is to compute
16 for 1 in xrange(n): e remmm b Flabborad
17 sm += sqri(l.a-rand()**2) l Object inspector l Variable explorer H File explorer]
18 return 4.0%sm/n
19 N |C0nso|e g X
20 def v2(n = 100000): Pyvthon 1] 0403 =
21 """Implement vl above using weave for the € call™™” = 1Py e 000508 4a
22 support = "#include <stdlib.h>"
23 code = In [2]: sin([1,2,3])
24 double sm; out[2]: array([0.84147095, ©.90929743, 0.14112001])
25 float rnd;
26 srand(1); // seed random number generataor In [3]:
27 sm = @.8;
28 for{int i=@;i<n;++i) {
29 rnd = rand()/ (RAND MAX+1.@);
EL] sm += sqrt(l.0-rnd*rnd);
31 T
< I | Console | History log

Permissions: Ri | End-of-ines: LF Encoding: UTF-8 | Line: 1 Column: 1 I_I

#5: Python IDEs: Komodo

bt =
Eile Edit Code View Project Toclbox Tools Window Help

€9 - DLEB 4DD 2 B0 -FIIT= WS D

Projects - | x || StartPage | ListMethods.py = NumberGuessingGame.py x |
c@. L~ 1 #!/usr/bin/env python
2
MName v B 3 UserResponse = int (input ("Pleae enter a number: "))
‘% FirstApp.kpf 4 Guessed = False
[ListMethods.py <
D MumberGuessingGame. 6% while Guessed == True:
g Py .
T = if UserResponse < 50:
8 print ("The number you wrote i= a bit too low."™)
g UserResponse = int (input ("Pleae enter another number: "))
10
:L:L|:—:| if UserResponse > 50:
12 print ("The number you wrote has gone too high!™)
13 UserResponse = int (input ("Pleae enter another number: "))
14 |
15 [— if UserResponse == 50:
15[E print ("You guessed the number!™)
17 Guessgsed = False

IDE Features

» Code completion - will try to autocomplete variable
and function names

» Syntax highlighting - will colorize text to make syntax
more clear, and flag lines with syntax errors

» Code style suggestions - will flag lines that may not be
formatted clearly (though a lot is still up to you)

» Integrated debugging - unlike IDLE, you can step
through your code right in the same window

» Unit testing - can define tests for individual classes,
and have them run automatically

» Version control - can show you whether each file is up-
to-date or how it differs from the master version

Summary

» For building real programs, we need to think about
some new issues:

» Coding style
» Debugging

» Testing

» Version control
» |IDEs

» All of these things have to be learned through practice,
and every programmer develops their own set of tools
that they like to use

Homework: Debugging a
program

» Download the palindrome_buggy.py file from the
website

» The program is supposed to check if a string is a
palindrome (same forwards and backwards) but has bugs
and is failing its tests

» Use the IDLE debugger to help find the bugs so that it
passes all tests

