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Last week recap

 Algorithm: procedure for computing something

 Data structure: system for keeping track for 

information – optimized for certain actions

 “Good” algorithms have time and memory 

requirements that scale slowly with data size

 “Big O” notation gives scaling behavior for 

most expensive part of algorithm

 O(log n) or O(n) great!

 O(n2) may be okay

 O(2n) or O(n!) very bad!



Sorting

 Sorting: taking a bunch of objects and 

putting them in order

 Why do we care?

 An important piece of many other 

algorithms

 A good example of lots of algorithms 

concepts

 We can prove that we’ve found the best 

possible sorting algorithms (in big O sense)



Last week’s assignment



Stable sorting

 Sometimes the numbers we’re sorting are 

attached to a more complicated piece of 

data, so identical numbers correspond to 

different things

 Often want a sort to be stable: want 

identical numbers to remain in the same 

order after sorting



Stable sorting

 Sort first by number, then by suit

 Don’t want second sort to mess up first one



Comparison Table

Name Avg. Time Memory Stable?

Bubble O(n2) O(1) Yes



Things could be worse: 

Bogosort

 The stupidest possible sorting algorithm: 

randomly shuffle the items, then check to see 

if it is sorted

 There are O(n!) shuffles and each check takes 

O(n), so this has running time O(n*n!)

 Not stable

 At least it doesn’t require any extra memory!



Comparison Table

Name Avg. Time Memory Stable?

Bubble O(n2) O(1) Yes

Bogo O(n*n!) O(1) No



Insertion sort

 The most intuitive sorting algorithm

 One at a time, insert items into a sorted list 

on the left side



Insertion sort

 The most intuitive sorting algorithm

 One at a time, insert items into a sorted list 

on the left side



Big O of insertion sort

 Have to insert O(n) elements

 Will have to move O(n) elements on each 

insertion

 Avg running time O(n2), and stable

 In practice, insertion sort tends to be better 

than bubble sort

 Sometimes the very fastest sort for short lists 

(<10 elements)

 Variant called selection sort (more compares, 

fewer shifts)



Comparison Table

Name Avg. Time Memory Stable?

Bubble O(n2) O(1) Yes

Bogo O(n*n!) O(1) No

Insertion O(n2) O(1) Yes



Mergesort

 It’s easy to merge together two sorted lists:

1    4    7    10             3     5    6    11

 “To sort a list, first sort the left side, then 

sort the right side, then merge the two lists 

together”

 This is a recursive sort, since mergesort will 

call itself on each half of the list



Mergesort



Big O for Mergesort

 There log(n) splitting levels

 Each element will have to be merged at each 

level

 Avg running time O(n * log(n))

 BUT requires extra O(n) memory

 Stable sort



Comparison Table

Name Avg. Time Memory Stable?

Bubble O(n2) O(1) Yes

Bogo O(n*n!) O(1) No

Insertion O(n2) O(1) Yes

Merge O(n*log(n)) O(n) Yes



Quicksort

 Somewhat complicated, but probably the 

most common sorting algorithm used in 

practice

 Also recursive, but with opposite logic from 

mergesort:

 “To sort an array, first get the smaller items 

on the left and the larger items on the right, 

then sort the left and right arrays”

 Pick a “pivot” item to define small vs. large



Quicksort



Big O for Quicksort

 On average takes O(log n) splits, and each 

level of splitting looks at all O(n) items

 Avg running time O(n*log(n))

 Only requires O(log(n)) extra memory, to keep 

track of the recursive splits

 BUT not stable

 Can be made stable, but requires some 

extra complexity and O(n) extra space

 Also, has O(n2) worst-case running time (if 

pivots are very unbalanced)



Comparison Table

Name Avg. Time Memory Stable?

Bubble O(n2) O(1) Yes

Bogo O(n*n!) O(1) No

Insertion O(n2) O(1) Yes

Merge O(n*log(n)) O(n) Yes

Quick O(n*log(n)) O(log(n)) Depends



Real running time

100 1,000 10,000 100,000 1,000,000

Bubble 0.050 5.93 445.92 44677.46 -

Insertion 0.015 1.72 126.41 12478.55 -

Merge 0.016 0.22 2.44 29.38 340.39

Quick 0.011 0.16 1.67 20.01 236.51

From: http://ddeville.me/2010/10/sorting-algorithms-comparison/



Visualizations

 https://www.cs.usfca.edu/~galles/visualization/Compa

risonSort.html

 http://bost.ocks.org/mike/algorithms/#sorting

https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
http://bost.ocks.org/mike/algorithms/


Can we do better?

 Our best sorts are running in O(n log n)

 Is it possible to run faster?

 What is the minimum number of decisions a 

sorting algorithm needs to make?



Optimal sorting

 There are a total of n! possible ways to order 

a list – we need to pick one of these orders

 Every time we compare two numbers x,y in a 

sorting algorithm, we get one of two answers: 

x should go first, or y should go first

 D decisions -> 2D possible outcomes



Optimal sorting

 We need 2D = n!

 Use Stirling’s approximation:

 Taking log of both sides, D = O(n log n)

 So any sort that works by making comparisons 

must have average running time at least    

O(n log n) 



Doing the impossible

 Do a first pass, counting how many of each number 

there are

 Can then calculate where each number should go

Input:     5    1    3    6    3    6

Output:     1    3    3    5    6    6

Number 1 2 3 4 5 6

Count 1 0 2 0 1 2

Cumulative 1 1 3 3 4 6

Position 1 - 2,3 - 4 5,6



Counting sort

 This is called counting sort

 This is a stable sort that runs in linear O(n) 

time!!

 How did we beat the theoretical bound?

 This is not a comparison sort – we never 

compare the items to one another



Non-comparison sorts

 Rather than comparing items, we directly 

calculate an item’s position in the output list

 Catches:

 The keys we’re sorting need to come from 

a limited set

 Requires O(n) extra space to store 

counting table and output array

 Comparison sorts are more general, requiring 

only some way to compare the items



Radix sort

 How to sort integers with 8 digits?

 Could use counting sort, with a huge table…

 Let’s use counting sort on each digit, 

repeating where necessary:

43028585     11474012     11474012

32820239     32820239     32820239 

11474012     38572023     38572023 

38572023     43028585     42581562 

42581562     42581562     43028585 



Radix sort

 Left-right: “Most Significant Digit” radix sort

 Have to keep track of create groups to sort 

within, and isn’t stable

 Usually use “Least Significant Digit” radix 

sort, moving right to left

412   751        412        412

482 412        751        482

994 482        482        751

751 994        989        989

989 989       994         994



Big O for Radix Sort

 If number of digits is fixed, then we just need to 

do a fixed number of passes through n items

 Running time O(n)

 Works also for nonnumeric fixed-length 

sequences (e.g. fixed-length strings)



Sample problem

 Each of my friends is free for a different 

period of time on Saturday, e.g.

 10am-1pm for person 1,

 11am-5pm for person 2,

 9:30am–10:30pm for person 3

 12pm-4pm for person 4…

 What is the interval of time during which the 

most people are free?



One solution

 Convert to 24 hour time, and put all start and end times 

into a list, with each time tagged as start or end

10S,13E, 11S, 17E, 9.5S, 10.5E, 12S, 16E

 Sort times using any sorting algorithm

9.5S, 10S, 10.5E, 11S, 12S, 13E, 16E, 17E

 Move left to right, keeping track of #S - #E (this is the 

number of people free during this time)

 Whenever we reach a new maximum of #S - #E, record 

the current time, and set end time at next E

 Runs in O(n log n) time (or O(n) if times are integers)



Assignment: Mode of a list

 Generate a random list 10,000 integers 

between  1-100

 Write a program that finds the mode (the 

most common number) of the list

 What is the time complexity of your 

algorithm?

 Note: you can use an existing implementation 

of a sorting algorithm

 Also: vote for rescheduling December 10th 

class: December 7th (Mon) or 11th (Fri)


