
Sorting
Dr. Baldassano

Yu’s Elite Education

Last week recap

 Algorithm: procedure for computing something

 Data structure: system for keeping track for

information – optimized for certain actions

 “Good” algorithms have time and memory

requirements that scale slowly with data size

 “Big O” notation gives scaling behavior for

most expensive part of algorithm

 O(log n) or O(n) great!

 O(n2) may be okay

 O(2n) or O(n!) very bad!

Sorting

 Sorting: taking a bunch of objects and

putting them in order

 Why do we care?

 An important piece of many other

algorithms

 A good example of lots of algorithms

concepts

 We can prove that we’ve found the best

possible sorting algorithms (in big O sense)

Last week’s assignment

Stable sorting

 Sometimes the numbers we’re sorting are

attached to a more complicated piece of

data, so identical numbers correspond to

different things

 Often want a sort to be stable: want

identical numbers to remain in the same

order after sorting

Stable sorting

 Sort first by number, then by suit

 Don’t want second sort to mess up first one

Comparison Table

Name Avg. Time Memory Stable?

Bubble O(n2) O(1) Yes

Things could be worse:

Bogosort

 The stupidest possible sorting algorithm:

randomly shuffle the items, then check to see

if it is sorted

 There are O(n!) shuffles and each check takes

O(n), so this has running time O(n*n!)

 Not stable

 At least it doesn’t require any extra memory!

Comparison Table

Name Avg. Time Memory Stable?

Bubble O(n2) O(1) Yes

Bogo O(n*n!) O(1) No

Insertion sort

 The most intuitive sorting algorithm

 One at a time, insert items into a sorted list

on the left side

Insertion sort

 The most intuitive sorting algorithm

 One at a time, insert items into a sorted list

on the left side

Big O of insertion sort

 Have to insert O(n) elements

 Will have to move O(n) elements on each

insertion

 Avg running time O(n2), and stable

 In practice, insertion sort tends to be better

than bubble sort

 Sometimes the very fastest sort for short lists

(<10 elements)

 Variant called selection sort (more compares,

fewer shifts)

Comparison Table

Name Avg. Time Memory Stable?

Bubble O(n2) O(1) Yes

Bogo O(n*n!) O(1) No

Insertion O(n2) O(1) Yes

Mergesort

 It’s easy to merge together two sorted lists:

1 4 7 10 3 5 6 11

 “To sort a list, first sort the left side, then

sort the right side, then merge the two lists

together”

 This is a recursive sort, since mergesort will

call itself on each half of the list

Mergesort

Big O for Mergesort

 There log(n) splitting levels

 Each element will have to be merged at each

level

 Avg running time O(n * log(n))

 BUT requires extra O(n) memory

 Stable sort

Comparison Table

Name Avg. Time Memory Stable?

Bubble O(n2) O(1) Yes

Bogo O(n*n!) O(1) No

Insertion O(n2) O(1) Yes

Merge O(n*log(n)) O(n) Yes

Quicksort

 Somewhat complicated, but probably the

most common sorting algorithm used in

practice

 Also recursive, but with opposite logic from

mergesort:

 “To sort an array, first get the smaller items

on the left and the larger items on the right,

then sort the left and right arrays”

 Pick a “pivot” item to define small vs. large

Quicksort

Big O for Quicksort

 On average takes O(log n) splits, and each

level of splitting looks at all O(n) items

 Avg running time O(n*log(n))

 Only requires O(log(n)) extra memory, to keep

track of the recursive splits

 BUT not stable

 Can be made stable, but requires some

extra complexity and O(n) extra space

 Also, has O(n2) worst-case running time (if

pivots are very unbalanced)

Comparison Table

Name Avg. Time Memory Stable?

Bubble O(n2) O(1) Yes

Bogo O(n*n!) O(1) No

Insertion O(n2) O(1) Yes

Merge O(n*log(n)) O(n) Yes

Quick O(n*log(n)) O(log(n)) Depends

Real running time

100 1,000 10,000 100,000 1,000,000

Bubble 0.050 5.93 445.92 44677.46 -

Insertion 0.015 1.72 126.41 12478.55 -

Merge 0.016 0.22 2.44 29.38 340.39

Quick 0.011 0.16 1.67 20.01 236.51

From: http://ddeville.me/2010/10/sorting-algorithms-comparison/

Visualizations

 https://www.cs.usfca.edu/~galles/visualization/Compa

risonSort.html

 http://bost.ocks.org/mike/algorithms/#sorting

https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
http://bost.ocks.org/mike/algorithms/

Can we do better?

 Our best sorts are running in O(n log n)

 Is it possible to run faster?

 What is the minimum number of decisions a

sorting algorithm needs to make?

Optimal sorting

 There are a total of n! possible ways to order

a list – we need to pick one of these orders

 Every time we compare two numbers x,y in a

sorting algorithm, we get one of two answers:

x should go first, or y should go first

 D decisions -> 2D possible outcomes

Optimal sorting

 We need 2D = n!

 Use Stirling’s approximation:

 Taking log of both sides, D = O(n log n)

 So any sort that works by making comparisons

must have average running time at least

O(n log n)

Doing the impossible

 Do a first pass, counting how many of each number

there are

 Can then calculate where each number should go

Input: 5 1 3 6 3 6

Output: 1 3 3 5 6 6

Number 1 2 3 4 5 6

Count 1 0 2 0 1 2

Cumulative 1 1 3 3 4 6

Position 1 - 2,3 - 4 5,6

Counting sort

 This is called counting sort

 This is a stable sort that runs in linear O(n)

time!!

 How did we beat the theoretical bound?

 This is not a comparison sort – we never

compare the items to one another

Non-comparison sorts

 Rather than comparing items, we directly

calculate an item’s position in the output list

 Catches:

 The keys we’re sorting need to come from

a limited set

 Requires O(n) extra space to store

counting table and output array

 Comparison sorts are more general, requiring

only some way to compare the items

Radix sort

 How to sort integers with 8 digits?

 Could use counting sort, with a huge table…

 Let’s use counting sort on each digit,

repeating where necessary:

43028585 11474012 11474012

32820239 32820239 32820239

11474012 38572023 38572023

38572023 43028585 42581562

42581562 42581562 43028585

Radix sort

 Left-right: “Most Significant Digit” radix sort

 Have to keep track of create groups to sort

within, and isn’t stable

 Usually use “Least Significant Digit” radix

sort, moving right to left

412 751 412 412

482 412 751 482

994 482 482 751

751 994 989 989

989 989 994 994

Big O for Radix Sort

 If number of digits is fixed, then we just need to

do a fixed number of passes through n items

 Running time O(n)

 Works also for nonnumeric fixed-length

sequences (e.g. fixed-length strings)

Sample problem

 Each of my friends is free for a different

period of time on Saturday, e.g.

 10am-1pm for person 1,

 11am-5pm for person 2,

 9:30am–10:30pm for person 3

 12pm-4pm for person 4…

 What is the interval of time during which the

most people are free?

One solution

 Convert to 24 hour time, and put all start and end times

into a list, with each time tagged as start or end

10S,13E, 11S, 17E, 9.5S, 10.5E, 12S, 16E

 Sort times using any sorting algorithm

9.5S, 10S, 10.5E, 11S, 12S, 13E, 16E, 17E

 Move left to right, keeping track of #S - #E (this is the

number of people free during this time)

 Whenever we reach a new maximum of #S - #E, record

the current time, and set end time at next E

 Runs in O(n log n) time (or O(n) if times are integers)

Assignment: Mode of a list

 Generate a random list 10,000 integers

between 1-100

 Write a program that finds the mode (the

most common number) of the list

 What is the time complexity of your

algorithm?

 Note: you can use an existing implementation

of a sorting algorithm

 Also: vote for rescheduling December 10th

class: December 7th (Mon) or 11th (Fri)

