
Sorting
Dr. Baldassano

Yu’s Elite Education

Last week recap

 Algorithm: procedure for computing something

 Data structure: system for keeping track for

information – optimized for certain actions

 “Good” algorithms have time and memory

requirements that scale slowly with data size

 “Big O” notation gives scaling behavior for

most expensive part of algorithm

 O(log n) or O(n) great!

 O(n2) may be okay

 O(2n) or O(n!) very bad!

Sorting

 Sorting: taking a bunch of objects and

putting them in order

 Why do we care?

 An important piece of many other

algorithms

 A good example of lots of algorithms

concepts

 We can prove that we’ve found the best

possible sorting algorithms (in big O sense)

Last week’s assignment

Stable sorting

 Sometimes the numbers we’re sorting are

attached to a more complicated piece of

data, so identical numbers correspond to

different things

 Often want a sort to be stable: want

identical numbers to remain in the same

order after sorting

Stable sorting

 Sort first by number, then by suit

 Don’t want second sort to mess up first one

Comparison Table

Name Avg. Time Memory Stable?

Bubble O(n2) O(1) Yes

Things could be worse:

Bogosort

 The stupidest possible sorting algorithm:

randomly shuffle the items, then check to see

if it is sorted

 There are O(n!) shuffles and each check takes

O(n), so this has running time O(n*n!)

 Not stable

 At least it doesn’t require any extra memory!

Comparison Table

Name Avg. Time Memory Stable?

Bubble O(n2) O(1) Yes

Bogo O(n*n!) O(1) No

Insertion sort

 The most intuitive sorting algorithm

 One at a time, insert items into a sorted list

on the left side

Insertion sort

 The most intuitive sorting algorithm

 One at a time, insert items into a sorted list

on the left side

Big O of insertion sort

 Have to insert O(n) elements

 Will have to move O(n) elements on each

insertion

 Avg running time O(n2), and stable

 In practice, insertion sort tends to be better

than bubble sort

 Sometimes the very fastest sort for short lists

(<10 elements)

 Variant called selection sort (more compares,

fewer shifts)

Comparison Table

Name Avg. Time Memory Stable?

Bubble O(n2) O(1) Yes

Bogo O(n*n!) O(1) No

Insertion O(n2) O(1) Yes

Mergesort

 It’s easy to merge together two sorted lists:

1 4 7 10 3 5 6 11

 “To sort a list, first sort the left side, then

sort the right side, then merge the two lists

together”

 This is a recursive sort, since mergesort will

call itself on each half of the list

Mergesort

Big O for Mergesort

 There log(n) splitting levels

 Each element will have to be merged at each

level

 Avg running time O(n * log(n))

 BUT requires extra O(n) memory

 Stable sort

Comparison Table

Name Avg. Time Memory Stable?

Bubble O(n2) O(1) Yes

Bogo O(n*n!) O(1) No

Insertion O(n2) O(1) Yes

Merge O(n*log(n)) O(n) Yes

Quicksort

 Somewhat complicated, but probably the

most common sorting algorithm used in

practice

 Also recursive, but with opposite logic from

mergesort:

 “To sort an array, first get the smaller items

on the left and the larger items on the right,

then sort the left and right arrays”

 Pick a “pivot” item to define small vs. large

Quicksort

Big O for Quicksort

 On average takes O(log n) splits, and each

level of splitting looks at all O(n) items

 Avg running time O(n*log(n))

 Only requires O(log(n)) extra memory, to keep

track of the recursive splits

 BUT not stable

 Can be made stable, but requires some

extra complexity and O(n) extra space

 Also, has O(n2) worst-case running time (if

pivots are very unbalanced)

Comparison Table

Name Avg. Time Memory Stable?

Bubble O(n2) O(1) Yes

Bogo O(n*n!) O(1) No

Insertion O(n2) O(1) Yes

Merge O(n*log(n)) O(n) Yes

Quick O(n*log(n)) O(log(n)) Depends

Real running time

100 1,000 10,000 100,000 1,000,000

Bubble 0.050 5.93 445.92 44677.46 -

Insertion 0.015 1.72 126.41 12478.55 -

Merge 0.016 0.22 2.44 29.38 340.39

Quick 0.011 0.16 1.67 20.01 236.51

From: http://ddeville.me/2010/10/sorting-algorithms-comparison/

Visualizations

 https://www.cs.usfca.edu/~galles/visualization/Compa

risonSort.html

 http://bost.ocks.org/mike/algorithms/#sorting

https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
http://bost.ocks.org/mike/algorithms/

Can we do better?

 Our best sorts are running in O(n log n)

 Is it possible to run faster?

 What is the minimum number of decisions a

sorting algorithm needs to make?

Optimal sorting

 There are a total of n! possible ways to order

a list – we need to pick one of these orders

 Every time we compare two numbers x,y in a

sorting algorithm, we get one of two answers:

x should go first, or y should go first

 D decisions -> 2D possible outcomes

Optimal sorting

 We need 2D = n!

 Use Stirling’s approximation:

 Taking log of both sides, D = O(n log n)

 So any sort that works by making comparisons

must have average running time at least

O(n log n)

Doing the impossible

 Do a first pass, counting how many of each number

there are

 Can then calculate where each number should go

Input: 5 1 3 6 3 6

Output: 1 3 3 5 6 6

Number 1 2 3 4 5 6

Count 1 0 2 0 1 2

Cumulative 1 1 3 3 4 6

Position 1 - 2,3 - 4 5,6

Counting sort

 This is called counting sort

 This is a stable sort that runs in linear O(n)

time!!

 How did we beat the theoretical bound?

 This is not a comparison sort – we never

compare the items to one another

Non-comparison sorts

 Rather than comparing items, we directly

calculate an item’s position in the output list

 Catches:

 The keys we’re sorting need to come from

a limited set

 Requires O(n) extra space to store

counting table and output array

 Comparison sorts are more general, requiring

only some way to compare the items

Radix sort

 How to sort integers with 8 digits?

 Could use counting sort, with a huge table…

 Let’s use counting sort on each digit,

repeating where necessary:

43028585 11474012 11474012

32820239 32820239 32820239

11474012 38572023 38572023

38572023 43028585 42581562

42581562 42581562 43028585

Radix sort

 Left-right: “Most Significant Digit” radix sort

 Have to keep track of create groups to sort

within, and isn’t stable

 Usually use “Least Significant Digit” radix

sort, moving right to left

412 751 412 412

482 412 751 482

994 482 482 751

751 994 989 989

989 989 994 994

Big O for Radix Sort

 If number of digits is fixed, then we just need to

do a fixed number of passes through n items

 Running time O(n)

 Works also for nonnumeric fixed-length

sequences (e.g. fixed-length strings)

Sample problem

 Each of my friends is free for a different

period of time on Saturday, e.g.

 10am-1pm for person 1,

 11am-5pm for person 2,

 9:30am–10:30pm for person 3

 12pm-4pm for person 4…

 What is the interval of time during which the

most people are free?

One solution

 Convert to 24 hour time, and put all start and end times

into a list, with each time tagged as start or end

10S,13E, 11S, 17E, 9.5S, 10.5E, 12S, 16E

 Sort times using any sorting algorithm

9.5S, 10S, 10.5E, 11S, 12S, 13E, 16E, 17E

 Move left to right, keeping track of #S - #E (this is the

number of people free during this time)

 Whenever we reach a new maximum of #S - #E, record

the current time, and set end time at next E

 Runs in O(n log n) time (or O(n) if times are integers)

Assignment: Mode of a list

 Generate a random list 10,000 integers

between 1-100

 Write a program that finds the mode (the

most common number) of the list

 What is the time complexity of your

algorithm?

 Note: you can use an existing implementation

of a sorting algorithm

 Also: vote for rescheduling December 10th

class: December 7th (Mon) or 11th (Fri)

