Sorting

Dr. Baldassano

Yu’s Elite Education

Last week recap

» Algorithm: procedure for computing something

» Data structure: system for keeping track for
information - optimized for certain actions

» “Good” algorithms have time and memory
requirements that scale slowly with data size

» “Big O” notation gives scaling behavior for
most expensive part of algorithm

» O(log n) or O(n) great!
» O(n%) may be okay
» 0O(2") or O(n!) very bad!

Sorting

» Sorting: taking a bunch of objects and
putting them in order

» Why do we care?

» An important piece of many other
algorithms

» A good example of lots of algorithms
concepts

» We can prove that we’ve found the best
possible sorting algorithms (in big O sense)

Last week’s assignment

Stable sorting

» Sometimes the numbers we’re sorting are
attached to a more complicated piece of
data, so identical numbers correspond to
different things

» Often want a sort to be stable: want
identical numbers to remain in the same
order after sorting

Stable sorting

» Sort first by number, then by suit
» Don’t want second sort to mess up first one

7] 3 7 5 7 4
* .

vy ¥ * ads & [+ 4 & o b ad b ?‘!!
& A a%a
v v + PN ¢ o b * e
AAM 4 4 P BRT 4 44 % oY PP -
9 £ L c L vl ¥ s
%i adh & + 4 # E!! I!! I!H!- ?!!
L3 » a%a
+ 8 vY e aa OO
¢+ BB 6 4| A AN oW M v
£ H 9 i IR

4 7 3 5 6 7 9
ade & 2h & + 4 4 4 v ¥ aa A |4 b
) Y a®a
Py ¢ * vy e OO
PUET BRT b AAN Y G o
t L 3) / 6

Comparison Table

Bubble 0(n?) 0(1) Yes

Things could be worse:
Bogosort

» The stupidest possible sorting algorithm:
randomly shuffle the items, then check to see
if it is sorted

» There are O(n!) shuffles and each check takes
O(n), so this has running time O(n*n!)

» Not stable

» At least it doesn’t require any extra memory!

Comparison Table

Bubble 0(n?) 0(1) Yes
Bogo O(n*n!) O(1) No

Insertion sort

» The most intuitive sorting algorithm

» One at a time, insert items into a sorted list
on the left side

Insertion sort

» The most intuitive sorting algorithm

» One at a time, insert items into a sorted list
on the left side

6 5 3 1 8 7 2 4

Big O of insertion sort

» Have to insert O(n) elements

» Will have to move O(n) elements on each
insertion

» Avg running time O(n?), and stable

» In practice, insertion sort tends to be better
than bubble sort

» Sometimes the very fastest sort for short lists
(<10 elements)

» Variant called selection sort (more compares,
fewer shifts)

Comparison Table

Bubble 0(n?) 0(1) Yes
Bogo O(n*n!) O(1) No
Insertion O(n?) 0(1) Yes

Mergesort

» It’s easy to merge together two sorted lists:
1 4 7 10 3 5 6 11

» “To sort a list, first sort the left side, then
sort the right side, then merge the two lists
together”

» This is a recursive sort, since mergesort will
call itself on each half of the list

Mergesort

6 5 3 1 8 7 2 4

Big O for Mergesort

» There log(n) splitting levels

» Each element will have to be merged at each
level

» Avg running time O(n * log(n))
» BUT requires extra O(n) memory
» Stable sort

Comparison Table

Bubble 0(n?) 0(1) Yes
Bogo O(n*n!) O(1) No
Insertion O(n?) 0(1) Yes
Merge O(n*log(n)) O(n) Yes

Quicksort

» Somewhat complicated, but probably the
most common sorting algorithm used in
practice

» Also recursive, but with opposite logic from
mergesort:

» “To sort an array, first get the smaller items
on the left and the larger items on the right,
then sort the left and right arrays”

» Pick a “pivot” item to define small vs. large

Quicksort

\ ||||““||||I‘|I.“||‘|‘||I.‘|‘

Big O for Quicksort

» On average takes O(log n) splits, and each
level of splitting looks at all O(n) items

» Avg running time O(n*log(n))

» Only requires O(log(n)) extra memory, to keep
track of the recursive splits

» BUT not stable

» Can be made stable, but requires some
extra complexity and O(n) extra space

» Also, has O(n?) worst-case running time (if
pivots are very unbalanced)

Comparison Table

Bubble
Bogo
Insertion
Merge
Quick

O(n2) O(1)
O(n*n!) O(1)
0(n2) O(1)
O(n*log(n)) O(n)

S S’

O(n*log(n)) O(log(n))

Yes
No
Yes
Yes
Depends

Real running time

-mm

Bubble 0.050 5.93 445 92 44677 46

Insertion 0.015 1.72 126.41 12478.55

Merge 0.016 0.22 2.44 29.38 340.39
Quick 0.011 0.16 1.67 20.01 236.51

From: http://ddeville.me/2010/10/sorting-algorithms-comparison/

Visualizations

» https://www.cs.usfca.edu/~galles/visualization/Compa
risonSort.html

» http://bost.ocks.org/mike/algorithms/#sorting

https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
http://bost.ocks.org/mike/algorithms/

Can we do better?

» Our best sorts are running in O(n log n)
» Is it possible to run faster?

» What is the minimum number of decisions a
sorting algorithm needs to make?

Optimal sorting

» There are a total of n! possible ways to order
a list - we need to pick one of these orders

» Every time we compare two numbers X,y in a
sorting algorithm, we get one of two answers:
x should go first, or y should go first

» D decisions -> 2P possible outcomes

Optimal sorting

» We need 2P = n!

11 T
» Use Stirling’s approximation: n! ~ v/2mn (—)
€

» Taking log of both sides, D = O(n log n)

» So any sort that works by making comparisons
must have average running time at least
O(n log n)

Doing the impossible

» Do a first pass, counting how many of each number
there are

» Can then calculate where each number should go

Counting sort

» This is called counting sort

» This is a stable sort that runs in linear O(n)
time!!

» How did we beat the theoretical bound?

» This is not a comparison sort - we never
compare the items to one another

Non-comparison sorts

» Rather than comparing items, we directly
calculate an item’s position in the output list

» Catches:

» The keys we’re sorting need to come from
a limited set

» Requires O(n) extra space to store
counting table and output array

» Comparison sorts are more general, requiring
only some way to compare the items

Radix sort

» How to sort integers with 8 digits?
» Could use counting sort, with a huge table...

» Let’s use counting sort on each digit,
repeating where necessary:

43028585 11474012 11474012
32820239 32820239 32820239
11474012 38572023 38572023
38572023 43028585 42581562
42581562 42581562 43028585

Radix sort

» Left-right: “Most Significant Digit” radix sort

» Have to keep track of create groups to sort
within, and isn’t stable

» Usually use “Least Significant Digit” radix
sort, moving right to left

412 751 412 412
482 412 /51 482
994 482 482 751
751 994 989 989
989 989 994 994

Big O for Radix Sort

» If number of digits is fixed, then we just need to
do a fixed number of passes through n items

» Running time O(n)

» Works also for nonnumeric fixed-length
sequences (e.g. fixed-length strings)

Sample problem

» Each of my friends is free for a different
period of time on Saturday, e.g.

» 10am-1pm for person 1,
» 11am-5pm for person 2,
» 9:30am-10:30pm for person 3

» 12pm-4pm for person 4...

» What is the interval of time during which the
most people are free?

One solution

» Convert to 24 hour time, and put all start and end times
into a list, with each time tagged as start or end

10S,13E, 11S, 17E, 9.5S, 10.5E, 12S, 16E
» Sort times using any sorting algorithm
9.5S, 105, 10.5E, 11S, 125, 13E, 16E, 17E

» Move left to right, keeping track of #S - #E (this is the
number of people free during this time)

» Whenever we reach a new maximum of #S - #E, record
the current time, and set end time at next E

» Runs in O(n log n) time (or O(n) if times are integers)

Assignment: Mode of a list

» Generate a random list 10,000 integers
between 1-100

» Write a program that finds the mode (the
most common number) of the list

» What is the time complexity of your
algorithm?

» Note: you can use an existing implementation
of a sorting algorithm

» Also: vote for rescheduling December 10th
class: December 7th (Mon) or 11th (Fri)

