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Working memory is the limited capacity storage system involved in the maintenance and manipulation of information over short periods
of time. Individual capacity of working memory is associated with the integrity of white matter in the frontoparietal regions. It is unknown
to what extent the integrity of white matter underlying the working memory system is plastic. Using voxel-based analysis (VBA) of
fractional anisotropy (FA) measures of fiber tracts, we investigated the effect of working memory training on structural connectivity in an
interventional study. The amount of working memory training correlated with increased FA in the white matter regions adjacent to the
intraparietal sulcus and the anterior part of the body of the corpus callosum after training. These results showed training-induced
plasticity in regions that are thought to be critical in working memory. As changes in myelination lead to FA changes in diffusion tensor
imaging, a possible mechanism for the observed FA change is increased myelination after training. Observed structural changes may
underlie previously reported improvement of working memory capacity, improvement of other cognitive functions, and altered func-
tional activity following working memory training.

Introduction
Working memory is the limited capacity storage system involved
in the maintenance and manipulation of information over short
periods of time (Baddeley, 2003). Individual working memory
capacity (WMC) is correlated with a wide range of cognitive
functions (Baddeley, 2003). Impaired WMC is associated with
neurological and psychiatric disorders (Goldman-Rakic, 1994;
Baddeley, 2003), as well as normal aging (Wingfield et al., 1988).
Previous neuroimaging studies using diverse imaging methods
have investigated neural correlates of working memory and
WMC (Baddeley, 2003).

Previous findings have indicated that the integrity of white
matter in the frontoparietal regions is associated with WMC and
conditions with impaired WMC. Regions in the lateral prefrontal
cortex (LPFC) and parietal cortex, especially the inferior parietal
lobule (IPL) and intraparietal lobule, are involved with the work-

ing memory system and are activated during WM performance
(Baddeley, 2003; Klingberg, 2006). Further, the structural integ-
rity of white matter in frontoparietal white matter regions is
correlated with WMC (Klingberg, 2006). Additionally, several
neurological and psychiatric disorders are associated with im-
paired WMC as well as normal aging characterized by impaired
WMC and impaired structural integrity of frontoparietal white
matter regions (Moseley, 2002; Kanaan et al., 2005; Chua et al.,
2008). So, can WMC and the integrity of white matter structures
associated with WMC be increased by any means?

Previous studies have shown working memory training’s ef-
fects on psychological measures and neural systems. Training on
working memory tasks and on other cognitive tasks can improve
performance on trained tasks and untrained cognitive tasks (for
review, see Perrig et al., 2009) [see also Kawashima et al. (2005)
and Uchida and Kawashima (2008)]. Also, altered patterns of
brain activity in the frontoparietal cortices during untrained cog-
nitive tasks after working memory training have been demon-
strated (Olesen et al., 2004). Nevertheless, to our knowledge, no
previously reported study has investigated the effect of working
memory training on structural connectivity. Given that struc-
tural connectivity underlies WMC, as well as disorders with im-
paired WMC, both of which are of scientific and clinical interest,
it is important to investigate the extent of plasticity in structural
connectivity.

In this study, we focused on this uninvestigated issue using
intensive adaptive training of working memory. Voxel-based
analysis (VBA) of fractional anisotropy (FA) using diffusion ten-
sor imaging (DTI) (Le Bihan, 2003), was applied for the analysis
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of white matter connectivity changes. DTI is used to measure the
magnitude and direction of water diffusion (i.e., anisotropy) in
brain tissue. FA is a measure of the degree of anisotropy and is
thought to be modulated by the degree of myelination, axonal
membrane thickness and diameter, and/or the amount of parallel
organization of the axons (Basser and Pierpaoli, 1996; Beaulieu,
2002). Thus, FA is interpreted as an indicator of white matter path-
way strength, or integrity. We reasoned that the structural connec-
tivity that underlies the working memory network (Klingberg, 2006)
would be affected by the training.

Materials and Methods
Participants
Eleven healthy, right-handed individuals (eight men, three women) par-
ticipated. The mean age was 21.7 years (SD, 1.44). All subjects were
students at Sendai University. All subjects had normal vision, and none
had any history of neurological or psychiatric illness. Handedness was
evaluated using the Edinburgh handedness inventory (Oldfield, 1971).
Written informed consent was obtained from each subject. This study
was approved by the Ethics Committee of Tohoku University. One par-
ticipant who failed to perform two of our three training tasks was omitted
from further analysis.

Procedure
The working memory training programs were Borland C�� computer
programs developed in-house and consisted of three working memory
tasks. Participants undertook 2 months of training. Training on each day
lasted �25 min, but the total time depended on the level and time be-
tween trials. The working memory training program was provided to
each of the participants and was used by the subjects on their personal
computers. They were recommended to do the working memory train-
ing every day. When this was impossible for any reason (e.g., when they
had computer trouble), they were allowed to miss the working memory
training. Subjects were also allowed to do the working memory training
more than once a day. Responses to each trial were logged in a file on the
computer, and every 5 d, subjects were asked to submit the logs by mail so
that compliance could be verified. Participants were MRI scanned im-
mediately before and after the 2 month period, and all participants took
psychological tests immediately before and after the 2 month period. The
experimenter gave feedback about the working memory training to the
subjects as necessary.

Training tasks
Three working memory tasks were presented during each training ses-
sion: (1) A visuospatial working memory task in which circles were pre-
sented one at a time at a rate of 1/s in a three-by-three grid-like interface.
Participants had to remember the location and order of the stimuli. After
the presentation of stimuli, participants indicated the location and order
of the presented stimuli by clicking on a computer screen with a mouse.
(2) “Operation” N-back task. Generally in the N-back task, participants
were asked to memorize a series of stimuli and their temporal order,
update the list of recent items, and select the responses that corresponded
to the previously observed stimuli, according to the N-back rule (N stim-
uli ago). In our study, all the N-back tasks were designed to require
individuals to push one of several buttons that corresponded to the stim-
uli that were shown N stimuli ago, continuously during the task period,
unlike other N-back types, which typically require individuals to push
one of two buttons to judge whether the current stimuli and the stimuli
that were shown N stimuli ago were the same (Jaeggi et al., 2008). In this
“operation” N-back task, the stimuli consisted of pairs of numbers, 1 to 4,
shown in a random sequence on the screen (e.g., “1 � 4”). Participants
were asked to memorize the sum of the two numbers presented (ranging
from 2 to 8). The subjects had to push the button on the keyboard that
corresponded to N stimuli ago. The level of the task ( N) changed based
on participants’ performance, as described below, and the length of the
task changed based on the level of the task. One block of the task con-
sisted of 5 � N stimuli (for example, when N � 3, the number of the
stimuli was 15). (3) “Dual” N-back task. In this task, the number stimuli

consisted of numbers, 1 to 4, presented in a random sequence in one of
four places on a line. The participants were asked to memorize the loca-
tion and identity of the stimuli and their temporal order. The subjects
then had to push the buttons, 1, 2, 3, or 4, with their left hand, to indicate
the identity of the stimuli N stimuli ago and push the buttons, 5, 6, 7, or
8, with their right hands to indicate the location of the stimuli N stimuli
ago (the locations of buttons 5, 6, 7, and 8 corresponded to the locations
of the stimuli; button 5 corresponded to the leftmost stimulus and button
8 corresponded to the right-most stimulus). As was the case with the
“operation” N-back task, one block of the task consisted of 5 � N stimuli.
In all of the three tasks, the level of difficulty was varied by changing the
level of the tasks, based on the participants’ performance.

When the participants answered the problems correctly, the level of
the task increased by one, and when the participants failed to answer the
problems correctly three times in a row, the level of the task decreased by
one. In the first visuospatial working memory task, the level of difficulty
was varied by changing the number of presented stimuli. When partici-
pants answered the problem correctly (indicated the correct location of
all the stimuli in the presented order), it was regarded as a correct answer.
In the “operation” N-back task, the level of difficulty was varied by
changing the level of N. Blocks were regarded as completed correctly
when the participants made errors in �20% of the trials. In the “dual”
N-back task, the level of difficulty was also varied by changing the level of
N. Blocks were regarded as completed correctly when the participants
made errors in �25% of the trials for both location and identity identi-
fication. Each task of each session ended when subjects accumulated a
predetermined number of correct trials.

Image acquisition
All MRI data acquisition was conducted with a 3-T Philips Intera Achieva
scanner. Diffusion-weighted data were acquired using a spin-echo EPI
sequence (TR � 10,293 ms, TE � 55 ms, FOV � 22.4 cm, 2 � 2 � 2 mm 3

voxels, 60 slices, SENSE reduction factor � 2, number of acquisitions �
1). The diffusion weighting was isotropically distributed along 32 direc-
tions (b value � 1000 s/mm2). Additionally, a single image with no
diffusion weighting (b value � 0 s/mm2) (b value � 0 image) was ac-
quired. The total scan time was 7 min, 17 s. Other than 32 b � 1000
images and one b value � 0 image, there are acquisitions for phase
correction and for signal stabilization and these are not used as recon-
structed images.

Then, from the collected images, fractional anisotropy values were
calculated. In this study, we chose to set the number of acquisitions to
one and instead of increasing the number of acquisitions, the diffusion
weighting was isotropically distributed along as many as 32 directions.

Behavioral analysis
Behavioral data were analyzed using the statistical software, SPSS 16.0.
Because the usefulness of working memory training on improving work-
ing memory tasks was our primary interest, in the behavioral analysis,
differences between the highest performances (highest level of the task
that participants answered correctly) in the trained working memory
tasks in the first three trained sessions and those in the last three trained
sessions were tested using one-tailed paired t tests, with a threshold of p �
0.05. After that, to show that any test–retest changes as a group were
associated with working memory training, simple regression analysis
with a threshold of p � 0.05 was used to test whether there was a positive
correlation between the amount of improvement in performance (levels)
in the trained working memory tasks and the total amount of training
that participants completed. The total amount of training was calculated
as follows: {(number of completed sessions of the visuospatial working
memory task) � (number of completed sessions of the “operation”
N-back task) � (number of completed sessions of the “dual” N-back
task)}. Also, for the analysis of the performance of working memory
tasks, the performance of trained working memory tasks for each partic-
ipant in the first and last three sessions was calculated as follows: {(high-
est level of the visuospatial working memory task achieved in the first or
last three completed sessions) � (highest level of the “operation” N-back
task achieved in the first or last three completed sessions) � 2 � (highest
level of the “dual” N-back task achieved in the first or last three com-
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pleted sessions) (the performance of the dual N-back task was multiplied
by two because when the level of the dual N-back task increased by one,
the number of stimuli to be remembered increased by two).

Preprocessing of diffusion imaging data and statistical analysis
Preprocessing and data analysis were performed using Statistical Para-
metric Mapping software (SPM5; Wellcome Department of Cognitive
Neurology), implemented in Matlab (MathWorks).

Normalization. Before normalization of the FA map, our original
skull-stripped b value � 0 image template was created as follows. (1) The
skull of unsmoothed b value � 0 images from the pretraining scans of all
subjects in this study were stripped by masking the images by intensity
thresholding of the spatially smoothed (using 8 mm FWHM) b value � 0
image of each participant. (2)Then, using the affine and nonlinear spatial
normalization algorithm, this skull-stripped unsmoothed b value � 0
image was spatially normalized to the skull-stripped T2 template of
SPM5, which was made by masking the images by intensity thresholding
of the original SPM5’s T2 template. Templates of SPM are based on
averages taken from 152 brains from the Montreal Neurological Institute
database. By applying the parameters derived from the normalization of
the skull-stripped unsmoothed b value � 0 image, the skull-unstripped b
value � 0 image was also normalized. (3) This normalized skull-
unstripped b value � 0 image from the pretraining scan was then
smoothed using a Gaussian kernel of 8 mm FWHM, and then averaged
over all 10 subjects. We used a normalizing procedure which follows the
creation of a study-specific template. This is because the demographics of
our subject population might differ from those used to generate the
existing template and because each scanner introduces specific non-
uniformities in image intensity and inhomogeneities in the b value � 0
field. So use of the study-specific template is thought to optimize the
normalizing procedure. The procedure for making the study-specific
template was taken in the optimized VBM method (Good et al., 2001)
(see also Gaser, 2006). Studies have shown the usefulness of making a
study-specific template for the normalizing procedure from the normal
subject group such as those described above, in VBM and fMRI studies
(Hsu et al., 2007; Shen et al., 2007).

The pretraining and posttraining images can be very accurately
matched using within-subject registration methods (Collignon et al.,
1995), and this would lead to more accurate results. So, the skull-
unstripped b value � 0 image from the posttraining scan, which kept
alignment with the FA map image from the posttraining scan, was coreg-
istered to the skull-unstripped b value � 0 image from the pretraining
scan using the within-subject registration method. Using the affine and
nonlinear spatial normalization algorithm, the skull-unstripped b
value � 0 image from the pretraining scan of each participant was nor-
malized to our original skull-unstripped b value � 0 image template. By
applying the parameters derived from the normalization of the skull-
unstripped b value � 0 image from the pretraining scan of each partici-
pant, the FA map images from both pretraining and posttraining scans of
each participant were spatially normalized to give images with 2 � 2 � 2
mm 3 voxels.

Smoothing. Then, the normalized FA map image was spatially
smoothed using a Gaussian kernel of 10 mm FWHM. The smoothing
step confers a few important benefits. First, it improves the signal-to-
noise ratio which enhances detectability of the genuine effects of interest.
Second, it helps to ensure that the assumptions underlying the theory of
Gaussian random fields (i.e., Gaussian distribution and homoscedastic-
ity of residuals to the linear model) are met so that the correction for
multiple comparisons can be correctly performed. Third, it mitigates the
effect of imperfections in the spatial normalization of the constituent
images in the dataset (Ashburner and Friston, 2001; Bookstein, 2001).
We chose 10 mm as a smoothing parameter for the two reasons cited
below. First, Jones et al. (2005) investigated the effect of smoothing pa-
rameter in VBA of DT-MRI data, and in their study, neither small
smoothing parameters such as those �9 mm nor large smoothing pa-
rameter such as those �14 mm were appropriate or sensitive enough to
find the effects of interest. Second, their study also showed that a smaller
smoothing parameter resulted in an increasing number of voxels that had

non-normally distributed residuals, thus making valid statistical infer-
ences with a parametric approach problematic in these areas.

The first group-level analysis. The resulting maps representing the FA of
each participant in the pre- and post-MRI experiments were then for-
warded to the group paired-t analysis described below. In the whole-
brain analysis, using a paired-t test, we investigated regions that
showed increased FA following working memory training. In this
computation, we included only voxels that showed FA values �0.2.
This cutoff value was used because FA is susceptible to error arising
from partial volumes (Pfefferbaum and Sullivan, 2003) and because
with this FA cutoff value, we can dissociate white matter structure
from other tissues (Salat et al., 2005). This cutoff value resulted in a
search volume of 106,908 voxels.

The second group-level analysis. Finally, the signal change in FA be-
tween preintervention and postintervention images was computed at
each voxel for each participant. The resulting maps representing the FA
change between the pretraining and posttraining MRI experiments were
then forwarded to the group regression analysis described below.

Using regression analyses, the effect of working memory training on
structural changes was estimated by testing the relationship between the
amounts of FA change between pretraining and posttraining measures at
each voxel and the amount of working memory training that each subject
completed. Such tests were performed because participants were univer-
sity students who studied and played sports in their daily lives, possibly
affecting brain structure (Draganski et al., 2006; Jäncke et al., 2009), and
also because there may simply be time-lapse changes in brain structure
(Barnea-Goraly et al., 2005). We did not perform a correlation analysis
using working memory performance improvement as a covariate be-
cause in our study, the improvement of performance seems to be rather
affected by participants’ initial performance (see Results for details).
Here, this voxel-based correlation analysis was performed among regions
that were identified as showing significant changes in the paired-t anal-
ysis (“inclusive” masking). In this inclusive masking procedure, a mask
comprised of areas that were identified as showing significant changes in
the paired-t analysis (Fig. 1) ( p � 0.05, after correction for multiple
comparisons at cluster size, with a voxel-level cluster-determining
threshold of p � 0.005 uncorrected; see Statistics section below) was
applied to the results of voxel-based correlation analysis. In other words,
we restricted the results of the voxel-based correlation analysis to voxels
that showed significant FA increase in the paired-t analysis. This resulted
in a search volume of 1160 voxels in the voxel-based correlation analysis.
This “inclusive” masking reveals voxels that show two or more experi-
mental effects (in this case, FA increase after training and correlation
between the FA increase and amount of training), allowing characteriza-
tion of brain areas sensitive to multiple experimental factors.

In addition to this voxel-based correlation analysis, we performed
another correlation analysis. Here, simple regression analyses were per-
formed for the amount of training and the mean FA changes in the
clusters identified as significant in the paired-t analysis (See Discussion
for the reasons why we performed both of the correlation analyses de-
scribed above).

Figure 1. The cluster adjacent to the inferior parietal sulcus, which increased FA significantly
after training, together with the significant cluster in the frontal lobe adjacent to the border
between the frontal lobe and the parietal lobe ( p � 0.05, after correction for multiple com-
parisons at cluster size, with a voxel-level cluster-determining threshold of p � 0.005
uncorrected).
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Statistics. Regions with significance were inferred using cluster-level
statistics (Friston et al., 1996). In this procedure, the null hypothesis was
rejected when the clusters had a large spatial extent. The distribution of
cluster sizes can be found by parametric methods based on the theory of
Gaussian random fields, which accounts for image volume, smoothness,
and the cluster defining threshold. In cluster level, inference is done at the
cluster size; that is the probability that any cluster larger than the critical
cluster size is controlled. Only clusters with a p � 0.05, after correction
for multiple comparisons at cluster size, with a voxel-level cluster-
determining threshold of p � 0.005 uncorrected, were considered statis-
tically significant in this analysis. The voxel-level cluster-determining
threshold for cluster level analysis was chosen in this study because in the
cluster level test of random field theory, a higher voxel-level cluster-
determining threshold such as p � 0.001 resulted in a slightly anti-
conservative test under lower degrees of freedom, as in our experiment
(Hayasaka and Nichols, 2003) and, as another study suggested that too
low a voxel-level cluster-determining threshold, such as T-score �2
(which corresponds to approximately p � 0.05 under the degree of free-
dom of a typical MRI group-level analysis), also resulted in an anti-
conservative test (Poline et al., 1997). In the voxel-based correlation
analysis, for areas with a strong a priori hypothesis, namely, the white
matter regions adjacent to the dorsolateral prefrontal cortex (DLPFC),
the anterior part of the body of the corpus callosum, and the genu of the
corpus callosum, which connects the bilateral DLPFC (Barbas and Pandya,
1984), an uncorrected p value of �0.005, which corresponded to p � 0.07
corrected for false discovery rate (FDR) (Genovese et al., 2002) in this anal-
ysis, was considered significant.

Results
Behavioral performance
The highest performance in the trained working memory tasks
among the last three training sessions was significantly increased
compared to that of the first three training sessions (paired t test,
t � 5.01; df � 9, p � 0.001; see Materials and Methods for details
on the calculation of the performance of trained working mem-
ory tasks). This increase in the performance of trained working
memory tasks in each subject was significantly and positively
correlated with the amount of training that each subject had
completed (linear regression, t � 3.41; r � 0.76; df � 8, p �
0.009). Performance changes and the number of training sessions
for each task are provided in Table 1. Furthermore, there was a
statistical tendency of negative correlation between the increase
in the performance of trained working memory tasks in each
subject and each participant’s highest performance of trained
working memory tasks in the first three training sessions (linear
regression, t � �2.05; r � �0.59; df � 8, p � 0.075), suggesting
the inappropriateness of using increase in the performance of
trained working memory tasks as a covariate to show the effect of
working memory training on structural connectivity in this
study. There was no relationship between each participant’s total
amount of working memory training and each participant’s
highest performance of trained working memory tasks in the first
three training sessions (linear regression, t � �0.37; r � �0.13;
df � 8, p � 0.72).

VBA of diffusion tensor imaging data
FA change following the training
Initially in the VBA, we used a paired-t test to assess whether there
were group changes in FA after training. Then among the regions
that showed group changes in FA after training, we performed a
simple linear regression analysis. In this analysis, we tested for
associations between the changes in FA from pretraining to post-
training measures and each subjects’ total amount of training
during the training period to see whether the change in FA was
associated with working memory training. A significant increase
in FA was found in an anatomical cluster in a white matter region
adjacent to the inferior parietal sulcus (IPS) (x, y, z � �8, �24,
40; paired t test, t � 7.96; df � 9, p � 0.001, corrected for multiple
comparisons at the cluster level, with a cluster-determining
threshold of p � 0.005, uncorrected) (Fig. 1), in an anatomical
cluster that spreads around the body of the corpus callosum and
adjacent frontal lobe white matter regions (x, y, z � �4, 24, 26;
paired t test, t � 6.18; df � 9, p � 0.050, corrected for cluster size)
and in an anatomical cluster in a frontal lobe white matter region
near the border between the frontal and parietal lobe (x, y, z �
�16, �4, 38; paired t test, t � 5.74; df � 9, p � 0.007, corrected
for cluster size). There were no areas that showed significantly
reduced FA following the training.

Effect of training on FA change
There was a significant positive correlation between the increase
in FA after training and the amount of training in a white matter
region adjacent to the IPS in the first anatomical cluster (IPS) that
was identified in the paired-t analysis (x, y, z � �40, �50, 38;
linear regression, t � 6.37; df � 8, p � 0.006, corrected for cluster
size) (Fig. 2). There was a significant positive correlation between
the increase in FA after training, and amount of training, in a
white matter region adjacent to the body of the corpus callosum
in the second anatomical cluster that was identified in the first
analysis (x, y, z � �14, 14, 30; linear regression, t � 3.55; df � 8,

Table 1. Performance and amount of training for the three training tasks (mean � SD)

Highest level achieved
in the first three
sessions

Highest level achieved
in the last three
sessions

Number of completed
training sessionsa

Visuospatial WM task 8.00 � 0.89 8.90 � 0.94 40.5 � 12.4
Operation N-back 3.20 � 0.75 4.30 � 1.10 39.1 � 12.7
Dual N-back 2.50 � 0.50 3.80 � 0.60 37.6 � 12.8
aNote unless there was some reason for subjects to forgo completion of a task, the number of training sessions for the
three tasks would have been the same because subjects were required to do all the tasks. In addition, since subjects
were required to do the three training tasks in the same order, the number of training sessions in the first training
task (the visuospatial WM task) was the highest.

Figure 2. Working memory training and white matter structure changes. Increased FA after
training in the white matter region adjacent to the intraparietal sulcus showed a significant
correlation with amount of working memory training, overlaid on the mean smoothed FA
image from all participants ( p � 0.05, after correction for multiple comparisons at cluster size,
with a voxel-level cluster-determining threshold of p � 0.005 uncorrected). In the graph be-
low, the effect of working memory training at the peak voxel in this cluster was highlighted.
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p � 0.004 uncorrected, which corresponds to p � 0.06, corrected
for false discovery rate, for the regions with a high a priori hy-
pothesis) (Fig. 3). No significant negative correlations were ob-
served in the clusters that were identified in the paired-t analysis.
In addition to the voxel-based correlation analysis between the
amount of training and FA change, a correlation analysis was
performed between the amount of training and mean FA changes
in the clusters that showed a significant FA increase in the
paired-t analysis. Mean FA change in the cluster in the white
matter region adjacent to the IPS showed significant correlation
with amount of training (linear regression, t � 3.77; r � 0.80;
df � 8, p � 0.005), while mean FA changes did not show signif-
icant correlation in the cluster within two anatomical clusters; the
first of which spreads around the body of the corpus callosum
and the adjacent frontal lobe white matter regions (linear regres-
sion, t � 1.35; r � 0.43; df � 8, p � 0.214), and the second of
which is in a frontal lobe white matter region near the border
between the frontal and parietal lobe (linear regression, t � �0.06;
r � �0.02; df � 8, p � 0.953).

Discussion
The present study revealed the effect of working memory training
on structural connectivity. A novel finding is that working mem-
ory training increased the structural integrity of the white matter
region in the parietal regions and the white matter region adja-
cent to the body of the corpus callosum, both of which are
thought to be important in working memory. It is unlikely that
these findings can be explained by the effect of normal develop-
ment or other factors because increased structural integrity was
associated with the amount of working memory training.

Working memory training was associated with FA increases in
the white matter region close to the IPS, which connects working
memory nodes and may underlie the increased WMC after train-

ing. Several studies have explored the interconnections between
the intraparietal and frontal areas (Goldman-Rakic, 1988). For
example, one previous study (Selemon and Goldman-Rakic,
1988) showed that IPL regions close to the IPS were connected to
the prefrontal cortex, and projections from this region and the
dorsolateral prefrontal cortex have common projections to at
least 15 common cortical targets, suggesting that this region is
part of the larger neural circuitry. On the other hand, the inferior
and intraparietal cortexes are activated in response to a wide
range of working memory demands (Klingberg, 2006). A meta-
analysis of imaging studies of working memory showed that a
region around the IPS was involved with executive functions in
working memory (Wager and Smith, 2003), suggesting that this
region plays a key role in brain circuitry that is relevant to work-
ing memory. Consistent with this, activity in the intraparietal
region, together with the superior frontal sulcus, correlated
with working memory capacity (Olesen et al., 2003). Further-
more, values of FA in regions in the frontoparietal network
were positively correlated with working memory performance
and working-memory-related functional activity (Olesen et
al., 2003). These correlations in the previous study are consis-
tent with (1) a training-related increase in FA in this study, (2) a
training-related increase in performance of the working memory
task in this and a previous study (Olesen et al., 2004) (for review,
see Perrig et al., 2009), and (3) a training-related increase in func-
tional activity (Olesen et al., 2004) in a previous study. Thus, the
increase in FA in the white matter region adjacent to the IPS may
underlie the increased performance and activity change during
working memory tasks after training (Olesen et al., 2004).

Working memory training was associated with increases of
white matter structural integrity in the white matter adjacent to
the anterior part of the body of the corpus callosum, which con-
nects the bilateral DLPFCs, the key nodes of working memory,
suggesting that working memory training enhances WMC
through increased interhemispheric information transfer be-
tween the bilateral DLPFCs. The DLPFC is the key node of the
working memory system and this region is also one of the regions
that are thought to be engaged in the central executive function in
working memory (Baddeley, 2003). The anterior part of the body
of the corpus callosum connects the bilateral DLPFC (Barbas and
Pandya, 1984) and is thus considered to be involved with the
bihemispheric transfer of information that involves the DLPFC.
Thus, increased white matter structural integrity in this corpus
callosum region, which was caused by working memory training,
may lead to increased interhemispheric transfer between the key
nodes of working memory and enhance WMC. Nevertheless,
compared with the association between FA change adjacent to the
IPS and working memory training, the association between FA
change in the anterior part of the brain and training was minimal.
One possible cause of this may be the modality of the training
tasks in this study (all the training tasks in this study used visual
stimuli). A previous neuroimaging study (Crottaz-Herbette et al.,
2004) investigated the difference between the neural correlate of
visual verbal working memory and auditory verbal working
memory. The left posterior parietal cortex, primarily along the
IPS showed greater responses during visual verbal working mem-
ory whereas the left DLPFC showed greater responses during
auditory verbal working memory. Perhaps these kinds of the dif-
ferences are also observed between the effect of visual verbal
working memory training and the effect of auditory verbal work-
ing memory training. This will be an interesting research subject
to investigate in the future.

Figure 3. Working memory training and white matter structure changes. Increased FA after
training in the white matter region adjacent to the anterior part of the body of corpus callosum
showed a significant correlation with the amount of working memory training, overlaid on the
mean smoothed FA image from all participants ( p � 0.005 uncorrected, which corresponds to
p � 0.07, corrected for false discovery rate, for the regions with a high a priori hypothesis). In
this figure, the identified regions are shown with a threshold of p � 0.05, uncorrected for
visualization purposes. In the graph below, the effect of working memory training at the peak
voxel in this cluster was highlighted.
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We suggest that increased myelination, caused by neural ac-
tivity in fiber tracts during working memory training, is one pos-
sible mechanism underlying the observed FA increases after
working memory training. In the mouse, induction of myelina-
tion by neural activity has been demonstrated both in vivo and in
vitro (Demerens et al., 1996), and the myelination process was
affected by and could be manipulated from the outside within a
week (Koenig et al., 1995), as well as being affected by environ-
mental influences (Juraska and Kopcik, 1988). It has been well
established that myelination continues even into adulthood
(Yakovlev and Lecours, 1967; Benes et al., 1994; Nuñez et al.,
2000). Furthermore, preliminary research has suggested that my-
elination remains sensitive to experience, even in adulthood
(Markham and Greenough, 2004). Additionally, human studies
using DTI showed practice-induced white matter plasticity, even
in adulthood (Bengtsson et al., 2005). Our results fit with the idea
that skill learning, and experiences, which clearly continue
throughout life, are accompanied by structural changes, includ-
ing myelination (Koester, 1985).

The increase in FA following training may be associated with
the enhanced effectiveness of communication between neural
circuits, which, in turn, leads to enhanced performance of WM
tasks. This is for the following reasons. An action potential
spreads faster along myelinated axons than unmyelinated ones
(Bloom et al., 1988). In addition, the velocity of conduction of the
action potential spread increases with increased myelin thickness
in myelinated neuron fibers (Waxman, 1980). Faster conduction
velocity can facilitate information flow not only by speeding it
up but also by allowing for precise temporal coding of high-
frequency bursts of neuronal activity (McDonald and Sears,
1970; Swadlow, 1985; Shrager, 1993). Furthermore, integrity in
the timing of sequential events in neuronal circuits could lead to
more effective cognitive performance (Peters, 2002).

To show that FA changes in the clusters that showed signifi-
cant FA increase after training were correlated with amount of
working memory training, we performed two correlation analy-
ses: one with FA change at each voxel (VBA) and the other with
mean FA change in the significant clusters that showed significant
FA increase after training. The reason we performed a voxel-
based correlation analysis in addition to the correlation analysis
with mean FA changes in the clusters, was because averaging the
strength of the signals in clusters with significant FA increase after
training, whose voxels can include noise or other effects, is not the
best way to look at the effects of training in the region of a signif-
icant cluster. Cluster level inference does not statistically guaran-
tee that every single voxel in the significant cluster shows the
effect of the contrast (Friston et al., 1996). Rather, the significant
cluster in the cluster level analysis can include voxels that showed
a statistical tendency because of the noise or, in our study’s case,
that showed a statistical tendency because of other effects (such as
time-lapse change).

There are a few limitations to this study. One is that the sub-
jects’ characteristics might affect the results of morphological
data, because different subject characteristics (e.g., age) affect
differential time-lapse changes in brain structure (Shaw et al.,
2006). Other limitations are the limited number of participants
and number of b value � 0 images in our protocol. In our study,
because of our MRI scanner’s limitation, only a single b value � 0
image (compared with 32 b value � 1000 images) has been ac-
quired, even though previous studies (Jones et al., 1999, 2002)
recommended that 10% of total images acquired be with lower
diffusion weighting for precision in estimates of diffusivity. The
low statistical power caused by these factors might prevent us

from finding significant training effects on FA in other regions
that are important to working memory, such as the right pre-
frontal cortex. Also, because of our within-subject registration
between the pretraining and posttraining images, the post-
training images undergo one interpolation operation more
than the pretraining images. This may be a potential pitfall in
finding differences between pretraining and posttraining data,
although individual differences and their correlation with
amount of training cannot be explained by this problem. Finally,
although the correlation between FA change and amount of training
are impressive in and of themselves, it is still possible, (though un-
likely), that FA could have changed over the time period for other
reasons.

In summary, the present results show the effects of working
memory training on white matter structures that are important
in working memory. White matter brain structure underlies cog-
nitive abilities (Olesen et al., 2003), as well as several neurological
and psychiatric disorders and normal aging (Moseley, 2002;
Kanaan et al., 2005; Chua et al., 2008). Thus, the idea that a brain
structure can be changed through short-term cognitive training
may provide the basis for new insights into neural plasticity, and
may have clinical applications (Klingberg et al., 2002).
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